ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.simpa.2023.100482 http://hdl.handle.net/11449/248380 |
Resumo: | This paper presents a new approach for detecting algal insurgence in water environments by using remote sensing image series. The designed methodology provides a robust and accurate algorithm as an alternative to typical algal bloom detection methods. In more technical terms, by only assuming as input an image time series, a fully automatic data-driven scheme involving pre-processing and feature extraction procedures is derived, which models a machine intelligent-based classifier capable of detecting algal blooms. Lastly, algal insurgence maps are then produced by passing to the classifier an image taken at an instant of interest. |
id |
UNSP_bfe6049e08fc97cd01d4d62582d005ea |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/248380 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]Algal bloomMachine learningRemote sensingSpectral indexThis paper presents a new approach for detecting algal insurgence in water environments by using remote sensing image series. The designed methodology provides a robust and accurate algorithm as an alternative to typical algal bloom detection methods. In more technical terms, by only assuming as input an image time series, a fully automatic data-driven scheme involving pre-processing and feature extraction procedures is derived, which models a machine intelligent-based classifier capable of detecting algal blooms. Lastly, algal insurgence maps are then produced by passing to the classifier an image taken at an instant of interest.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)São Paulo State University (UNESP), São José dos CamposGraduate Program in Natural Disasters (UNESP/CEMADEN), São José dos CamposCivil and Environmental Engineering Graduate Program (UNESP), BauruSão Paulo State University (UNESP), AraraquaraSão Paulo State University (UNESP), São José do Rio PretoSão Paulo State University (UNESP), São José dos CamposGraduate Program in Natural Disasters (UNESP/CEMADEN), São José dos CamposCivil and Environmental Engineering Graduate Program (UNESP), BauruSão Paulo State University (UNESP), AraraquaraSão Paulo State University (UNESP), São José do Rio PretoFAPESP: 2021/01305-6FAPESP: 2021/03328-3CNPq: 316228/2021-4Universidade Estadual Paulista (UNESP)Ananias, Pedro Henrique M. [UNESP]Negri, Rogério G. [UNESP]Bressane, Adriano [UNESP]Colnago, Marilaine [UNESP]Casaca, Wallace [UNESP]2023-07-29T13:42:28Z2023-07-29T13:42:28Z2023-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.simpa.2023.100482Software Impacts, v. 15.2665-9638http://hdl.handle.net/11449/24838010.1016/j.simpa.2023.1004822-s2.0-85148354188Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSoftware Impactsinfo:eu-repo/semantics/openAccess2024-06-28T12:56:42Zoai:repositorio.unesp.br:11449/248380Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:28:42.832692Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] |
title |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] |
spellingShingle |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] Ananias, Pedro Henrique M. [UNESP] Algal bloom Machine learning Remote sensing Spectral index |
title_short |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] |
title_full |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] |
title_fullStr |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] |
title_full_unstemmed |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] |
title_sort |
ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented] |
author |
Ananias, Pedro Henrique M. [UNESP] |
author_facet |
Ananias, Pedro Henrique M. [UNESP] Negri, Rogério G. [UNESP] Bressane, Adriano [UNESP] Colnago, Marilaine [UNESP] Casaca, Wallace [UNESP] |
author_role |
author |
author2 |
Negri, Rogério G. [UNESP] Bressane, Adriano [UNESP] Colnago, Marilaine [UNESP] Casaca, Wallace [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Ananias, Pedro Henrique M. [UNESP] Negri, Rogério G. [UNESP] Bressane, Adriano [UNESP] Colnago, Marilaine [UNESP] Casaca, Wallace [UNESP] |
dc.subject.por.fl_str_mv |
Algal bloom Machine learning Remote sensing Spectral index |
topic |
Algal bloom Machine learning Remote sensing Spectral index |
description |
This paper presents a new approach for detecting algal insurgence in water environments by using remote sensing image series. The designed methodology provides a robust and accurate algorithm as an alternative to typical algal bloom detection methods. In more technical terms, by only assuming as input an image time series, a fully automatic data-driven scheme involving pre-processing and feature extraction procedures is derived, which models a machine intelligent-based classifier capable of detecting algal blooms. Lastly, algal insurgence maps are then produced by passing to the classifier an image taken at an instant of interest. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-29T13:42:28Z 2023-07-29T13:42:28Z 2023-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.simpa.2023.100482 Software Impacts, v. 15. 2665-9638 http://hdl.handle.net/11449/248380 10.1016/j.simpa.2023.100482 2-s2.0-85148354188 |
url |
http://dx.doi.org/10.1016/j.simpa.2023.100482 http://hdl.handle.net/11449/248380 |
identifier_str_mv |
Software Impacts, v. 15. 2665-9638 10.1016/j.simpa.2023.100482 2-s2.0-85148354188 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Software Impacts |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129207492935680 |