ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]

Detalhes bibliográficos
Autor(a) principal: Ananias, Pedro Henrique M. [UNESP]
Data de Publicação: 2023
Outros Autores: Negri, Rogério G. [UNESP], Bressane, Adriano [UNESP], Colnago, Marilaine [UNESP], Casaca, Wallace [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.simpa.2023.100482
http://hdl.handle.net/11449/248380
Resumo: This paper presents a new approach for detecting algal insurgence in water environments by using remote sensing image series. The designed methodology provides a robust and accurate algorithm as an alternative to typical algal bloom detection methods. In more technical terms, by only assuming as input an image time series, a fully automatic data-driven scheme involving pre-processing and feature extraction procedures is derived, which models a machine intelligent-based classifier capable of detecting algal blooms. Lastly, algal insurgence maps are then produced by passing to the classifier an image taken at an instant of interest.
id UNSP_bfe6049e08fc97cd01d4d62582d005ea
oai_identifier_str oai:repositorio.unesp.br:11449/248380
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]Algal bloomMachine learningRemote sensingSpectral indexThis paper presents a new approach for detecting algal insurgence in water environments by using remote sensing image series. The designed methodology provides a robust and accurate algorithm as an alternative to typical algal bloom detection methods. In more technical terms, by only assuming as input an image time series, a fully automatic data-driven scheme involving pre-processing and feature extraction procedures is derived, which models a machine intelligent-based classifier capable of detecting algal blooms. Lastly, algal insurgence maps are then produced by passing to the classifier an image taken at an instant of interest.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)São Paulo State University (UNESP), São José dos CamposGraduate Program in Natural Disasters (UNESP/CEMADEN), São José dos CamposCivil and Environmental Engineering Graduate Program (UNESP), BauruSão Paulo State University (UNESP), AraraquaraSão Paulo State University (UNESP), São José do Rio PretoSão Paulo State University (UNESP), São José dos CamposGraduate Program in Natural Disasters (UNESP/CEMADEN), São José dos CamposCivil and Environmental Engineering Graduate Program (UNESP), BauruSão Paulo State University (UNESP), AraraquaraSão Paulo State University (UNESP), São José do Rio PretoFAPESP: 2021/01305-6FAPESP: 2021/03328-3CNPq: 316228/2021-4Universidade Estadual Paulista (UNESP)Ananias, Pedro Henrique M. [UNESP]Negri, Rogério G. [UNESP]Bressane, Adriano [UNESP]Colnago, Marilaine [UNESP]Casaca, Wallace [UNESP]2023-07-29T13:42:28Z2023-07-29T13:42:28Z2023-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.simpa.2023.100482Software Impacts, v. 15.2665-9638http://hdl.handle.net/11449/24838010.1016/j.simpa.2023.1004822-s2.0-85148354188Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSoftware Impactsinfo:eu-repo/semantics/openAccess2024-06-28T12:56:42Zoai:repositorio.unesp.br:11449/248380Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:28:42.832692Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
title ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
spellingShingle ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
Ananias, Pedro Henrique M. [UNESP]
Algal bloom
Machine learning
Remote sensing
Spectral index
title_short ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
title_full ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
title_fullStr ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
title_full_unstemmed ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
title_sort ABD: A machine intelligent-based algal bloom detector for remote sensing images[Formula presented]
author Ananias, Pedro Henrique M. [UNESP]
author_facet Ananias, Pedro Henrique M. [UNESP]
Negri, Rogério G. [UNESP]
Bressane, Adriano [UNESP]
Colnago, Marilaine [UNESP]
Casaca, Wallace [UNESP]
author_role author
author2 Negri, Rogério G. [UNESP]
Bressane, Adriano [UNESP]
Colnago, Marilaine [UNESP]
Casaca, Wallace [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Ananias, Pedro Henrique M. [UNESP]
Negri, Rogério G. [UNESP]
Bressane, Adriano [UNESP]
Colnago, Marilaine [UNESP]
Casaca, Wallace [UNESP]
dc.subject.por.fl_str_mv Algal bloom
Machine learning
Remote sensing
Spectral index
topic Algal bloom
Machine learning
Remote sensing
Spectral index
description This paper presents a new approach for detecting algal insurgence in water environments by using remote sensing image series. The designed methodology provides a robust and accurate algorithm as an alternative to typical algal bloom detection methods. In more technical terms, by only assuming as input an image time series, a fully automatic data-driven scheme involving pre-processing and feature extraction procedures is derived, which models a machine intelligent-based classifier capable of detecting algal blooms. Lastly, algal insurgence maps are then produced by passing to the classifier an image taken at an instant of interest.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:42:28Z
2023-07-29T13:42:28Z
2023-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.simpa.2023.100482
Software Impacts, v. 15.
2665-9638
http://hdl.handle.net/11449/248380
10.1016/j.simpa.2023.100482
2-s2.0-85148354188
url http://dx.doi.org/10.1016/j.simpa.2023.100482
http://hdl.handle.net/11449/248380
identifier_str_mv Software Impacts, v. 15.
2665-9638
10.1016/j.simpa.2023.100482
2-s2.0-85148354188
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Software Impacts
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129207492935680