PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing

Detalhes bibliográficos
Autor(a) principal: Günther, Florian
Data de Publicação: 2020
Outros Autores: Lima, Elton F. S., Rossi de Aguiar, Kelen M. F., Bearzi, Jefferson R., Simões, Mateus B., Schneider, Ricardo, Bini, Rafael A., Ribeiro, Sidney J. L. [UNESP], Man, Michel Wong Chi, Rischka, Klaus, Aguiar, Flávio H. B., Pereira, Renata, Mainardi, Maria do Carmo A. J., Rocha, Marina C., Malavazi, Iran, Passeti, Tânia A., Santos, Marcio L., Imasato, Hidetake, Rodrigues-Filho, Ubirajara Pereira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10971-020-05376-y
http://hdl.handle.net/11449/201154
Resumo: CO2 mitigation by cycloaddition to bis-epoxides to obtain bis-cyclocarbonates (CC) paved one way to a new class of polyurethanes (PUs), the non-isocyanate polyurethanes (NIPUs). By using molecules functionalized with alkoxysilyl groups as end chain it is possible to obtain hybrid NIPUs, also called urethanesils, by sol–gel chemistry. Using bis-cyclocarbonate polydimethylsiloxane (CCPDMS) with proper diamines and end-chain amino silanes followed by sol–gel processing leads to versatile hybrid non-isocyanate polydimethylsiloxane urethanes (PDMS-urethanesil). This review reports—besides our recent studies about PDMS-urethanesil materials—the sol–gel chemistry applied to synthesize urethanesil and its applications. While the antimicrobial, photochromic, and anticorrosion properties of urethanesil loaded with phosphotungstic acid as well as the luminescent effect of material loaded with Eu3+ have already been reported, antimicrobial features of urethanesil loaded with phosphoric acid are our newest findings which we herein report for the first time. The impact of the inorganic acid used on the sol–gel process is highlighted together with the importance of antibiofouling properties. Although the antibiofouling mechanism is still under investigation, the broad spectrum of action of phosphoric acid-loaded urethanesil is worth mentioning, since it has been tested to be efficient against some pathogenic bacteria including a drug resistant Staphylococcus aureus strain as well as pathogenic fungi and yeast. Due to the simple, straightforward, and highly reproducible synthesis as well as the opportunity to obtain versatile materials with tuneable mechanical and physical properties, this new class of hybrid materials promises to be applicable in different industrial fields. [Figure not available: see fulltext.].
id UNSP_c21acc47a777dcc138aae0c1b58233ab
oai_identifier_str oai:repositorio.unesp.br:11449/201154
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processingAnticorrosionBiomedical coatingsInorganic–organic hybridNon-isocyanate polyurethanesPhotonicPolydimethylsiloxaneCO2 mitigation by cycloaddition to bis-epoxides to obtain bis-cyclocarbonates (CC) paved one way to a new class of polyurethanes (PUs), the non-isocyanate polyurethanes (NIPUs). By using molecules functionalized with alkoxysilyl groups as end chain it is possible to obtain hybrid NIPUs, also called urethanesils, by sol–gel chemistry. Using bis-cyclocarbonate polydimethylsiloxane (CCPDMS) with proper diamines and end-chain amino silanes followed by sol–gel processing leads to versatile hybrid non-isocyanate polydimethylsiloxane urethanes (PDMS-urethanesil). This review reports—besides our recent studies about PDMS-urethanesil materials—the sol–gel chemistry applied to synthesize urethanesil and its applications. While the antimicrobial, photochromic, and anticorrosion properties of urethanesil loaded with phosphotungstic acid as well as the luminescent effect of material loaded with Eu3+ have already been reported, antimicrobial features of urethanesil loaded with phosphoric acid are our newest findings which we herein report for the first time. The impact of the inorganic acid used on the sol–gel process is highlighted together with the importance of antibiofouling properties. Although the antibiofouling mechanism is still under investigation, the broad spectrum of action of phosphoric acid-loaded urethanesil is worth mentioning, since it has been tested to be efficient against some pathogenic bacteria including a drug resistant Staphylococcus aureus strain as well as pathogenic fungi and yeast. Due to the simple, straightforward, and highly reproducible synthesis as well as the opportunity to obtain versatile materials with tuneable mechanical and physical properties, this new class of hybrid materials promises to be applicable in different industrial fields. [Figure not available: see fulltext.].Deutscher Akademischer AustauschdienstFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Grupo de Química de Materiais Híbridos e Inorgânicos (GQMATHI) Instituto de Química de São Carlos Universidade de São Paulo (USP)Grupo de Polímeros Instituto de Física de São Carlos Universidade de São Paulo (USP)Group of Polymers and Nanostructures (GPAN) Federal University of Technology—Paraná (UTFPR)Institute of Chemistry Universidade Estadual Paulista (UNESP)Institut Charles Gerhardt Montpellier (ICGM) University of Montpellier CNRS ENSCMFraunhofer Institute for Manufacturing Technology and Advanced Materials IFAMDepartment of Restorative Dentistry Piracicaba Dental School Universidade de Campinas (UNICAMP) PiracicabaFaculdade de Odontologia do Centro Universitário Hermínio Ometto—FHO—UniararasDepartamento de Genética e Evolução Centro de Ciências Biológicas e da Saúde Universidade Federal de São Carlos (UFSCAR)Biotechnology and Innovation in Health and Pharmacy Graduate Program University Anhanguera at São Paulo (UNIAN-SP)Institute of Chemistry Universidade Estadual Paulista (UNESP)FAPESP: 2018/15670-5Deutscher Akademischer Austauschdienst: 57210526Universidade de São Paulo (USP)Federal University of Technology—Paraná (UTFPR)Universidade Estadual Paulista (Unesp)ENSCMFraunhofer Institute for Manufacturing Technology and Advanced Materials IFAMUniversidade Estadual de Campinas (UNICAMP)Faculdade de Odontologia do Centro Universitário Hermínio Ometto—FHO—UniararasUniversidade Federal de São Carlos (UFSCar)University Anhanguera at São Paulo (UNIAN-SP)Günther, FlorianLima, Elton F. S.Rossi de Aguiar, Kelen M. F.Bearzi, Jefferson R.Simões, Mateus B.Schneider, RicardoBini, Rafael A.Ribeiro, Sidney J. L. [UNESP]Man, Michel Wong ChiRischka, KlausAguiar, Flávio H. B.Pereira, RenataMainardi, Maria do Carmo A. J.Rocha, Marina C.Malavazi, IranPasseti, Tânia A.Santos, Marcio L.Imasato, HidetakeRodrigues-Filho, Ubirajara Pereira2020-12-12T02:25:28Z2020-12-12T02:25:28Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article693-709http://dx.doi.org/10.1007/s10971-020-05376-yJournal of Sol-Gel Science and Technology, v. 95, n. 3, p. 693-709, 2020.1573-48460928-0707http://hdl.handle.net/11449/20115410.1007/s10971-020-05376-y2-s2.0-85089294135Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Sol-Gel Science and Technologyinfo:eu-repo/semantics/openAccess2021-10-23T16:15:42Zoai:repositorio.unesp.br:11449/201154Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T16:15:42Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
title PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
spellingShingle PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
Günther, Florian
Anticorrosion
Biomedical coatings
Inorganic–organic hybrid
Non-isocyanate polyurethanes
Photonic
Polydimethylsiloxane
title_short PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
title_full PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
title_fullStr PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
title_full_unstemmed PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
title_sort PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing
author Günther, Florian
author_facet Günther, Florian
Lima, Elton F. S.
Rossi de Aguiar, Kelen M. F.
Bearzi, Jefferson R.
Simões, Mateus B.
Schneider, Ricardo
Bini, Rafael A.
Ribeiro, Sidney J. L. [UNESP]
Man, Michel Wong Chi
Rischka, Klaus
Aguiar, Flávio H. B.
Pereira, Renata
Mainardi, Maria do Carmo A. J.
Rocha, Marina C.
Malavazi, Iran
Passeti, Tânia A.
Santos, Marcio L.
Imasato, Hidetake
Rodrigues-Filho, Ubirajara Pereira
author_role author
author2 Lima, Elton F. S.
Rossi de Aguiar, Kelen M. F.
Bearzi, Jefferson R.
Simões, Mateus B.
Schneider, Ricardo
Bini, Rafael A.
Ribeiro, Sidney J. L. [UNESP]
Man, Michel Wong Chi
Rischka, Klaus
Aguiar, Flávio H. B.
Pereira, Renata
Mainardi, Maria do Carmo A. J.
Rocha, Marina C.
Malavazi, Iran
Passeti, Tânia A.
Santos, Marcio L.
Imasato, Hidetake
Rodrigues-Filho, Ubirajara Pereira
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Federal University of Technology—Paraná (UTFPR)
Universidade Estadual Paulista (Unesp)
ENSCM
Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM
Universidade Estadual de Campinas (UNICAMP)
Faculdade de Odontologia do Centro Universitário Hermínio Ometto—FHO—Uniararas
Universidade Federal de São Carlos (UFSCar)
University Anhanguera at São Paulo (UNIAN-SP)
dc.contributor.author.fl_str_mv Günther, Florian
Lima, Elton F. S.
Rossi de Aguiar, Kelen M. F.
Bearzi, Jefferson R.
Simões, Mateus B.
Schneider, Ricardo
Bini, Rafael A.
Ribeiro, Sidney J. L. [UNESP]
Man, Michel Wong Chi
Rischka, Klaus
Aguiar, Flávio H. B.
Pereira, Renata
Mainardi, Maria do Carmo A. J.
Rocha, Marina C.
Malavazi, Iran
Passeti, Tânia A.
Santos, Marcio L.
Imasato, Hidetake
Rodrigues-Filho, Ubirajara Pereira
dc.subject.por.fl_str_mv Anticorrosion
Biomedical coatings
Inorganic–organic hybrid
Non-isocyanate polyurethanes
Photonic
Polydimethylsiloxane
topic Anticorrosion
Biomedical coatings
Inorganic–organic hybrid
Non-isocyanate polyurethanes
Photonic
Polydimethylsiloxane
description CO2 mitigation by cycloaddition to bis-epoxides to obtain bis-cyclocarbonates (CC) paved one way to a new class of polyurethanes (PUs), the non-isocyanate polyurethanes (NIPUs). By using molecules functionalized with alkoxysilyl groups as end chain it is possible to obtain hybrid NIPUs, also called urethanesils, by sol–gel chemistry. Using bis-cyclocarbonate polydimethylsiloxane (CCPDMS) with proper diamines and end-chain amino silanes followed by sol–gel processing leads to versatile hybrid non-isocyanate polydimethylsiloxane urethanes (PDMS-urethanesil). This review reports—besides our recent studies about PDMS-urethanesil materials—the sol–gel chemistry applied to synthesize urethanesil and its applications. While the antimicrobial, photochromic, and anticorrosion properties of urethanesil loaded with phosphotungstic acid as well as the luminescent effect of material loaded with Eu3+ have already been reported, antimicrobial features of urethanesil loaded with phosphoric acid are our newest findings which we herein report for the first time. The impact of the inorganic acid used on the sol–gel process is highlighted together with the importance of antibiofouling properties. Although the antibiofouling mechanism is still under investigation, the broad spectrum of action of phosphoric acid-loaded urethanesil is worth mentioning, since it has been tested to be efficient against some pathogenic bacteria including a drug resistant Staphylococcus aureus strain as well as pathogenic fungi and yeast. Due to the simple, straightforward, and highly reproducible synthesis as well as the opportunity to obtain versatile materials with tuneable mechanical and physical properties, this new class of hybrid materials promises to be applicable in different industrial fields. [Figure not available: see fulltext.].
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:25:28Z
2020-12-12T02:25:28Z
2020-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10971-020-05376-y
Journal of Sol-Gel Science and Technology, v. 95, n. 3, p. 693-709, 2020.
1573-4846
0928-0707
http://hdl.handle.net/11449/201154
10.1007/s10971-020-05376-y
2-s2.0-85089294135
url http://dx.doi.org/10.1007/s10971-020-05376-y
http://hdl.handle.net/11449/201154
identifier_str_mv Journal of Sol-Gel Science and Technology, v. 95, n. 3, p. 693-709, 2020.
1573-4846
0928-0707
10.1007/s10971-020-05376-y
2-s2.0-85089294135
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Sol-Gel Science and Technology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 693-709
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1797789712511926272