Disorder information from conductance: A quantum inverse problem

Detalhes bibliográficos
Autor(a) principal: Mukim, S.
Data de Publicação: 2020
Outros Autores: Amorim, F. P., Rocha, A. R., Muniz, R. B., Lewenkopf, C., Ferreira, M. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevB.102.075409
http://hdl.handle.net/11449/231450
Resumo: It is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust, and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements.
id UNSP_c24e0784a1c86ecd1f720e997fc6786e
oai_identifier_str oai:repositorio.unesp.br:11449/231450
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Disorder information from conductance: A quantum inverse problemIt is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust, and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements.School of Physics Trinity College Dublin Dublin 2Instituto de Física Teórica Saõ Paulo State UniversityInstituto de Física Universidade Federal FluminenseCentre for Research on Adaptive Nanostructures and Nanodevices (CRANN) Advanced Materials and Bioengineering Research (AMBER) Centre Trinity College DublinDublin 2Saõ Paulo State UniversityUniversidade Federal Fluminense (UFF)Trinity College DublinMukim, S.Amorim, F. P.Rocha, A. R.Muniz, R. B.Lewenkopf, C.Ferreira, M. S.2022-04-29T08:45:29Z2022-04-29T08:45:29Z2020-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevB.102.075409Physical Review B, v. 102, n. 7, 2020.2469-99692469-9950http://hdl.handle.net/11449/23145010.1103/PhysRevB.102.0754092-s2.0-85090114731Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Binfo:eu-repo/semantics/openAccess2022-04-29T08:45:29Zoai:repositorio.unesp.br:11449/231450Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:07:19.581567Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Disorder information from conductance: A quantum inverse problem
title Disorder information from conductance: A quantum inverse problem
spellingShingle Disorder information from conductance: A quantum inverse problem
Mukim, S.
title_short Disorder information from conductance: A quantum inverse problem
title_full Disorder information from conductance: A quantum inverse problem
title_fullStr Disorder information from conductance: A quantum inverse problem
title_full_unstemmed Disorder information from conductance: A quantum inverse problem
title_sort Disorder information from conductance: A quantum inverse problem
author Mukim, S.
author_facet Mukim, S.
Amorim, F. P.
Rocha, A. R.
Muniz, R. B.
Lewenkopf, C.
Ferreira, M. S.
author_role author
author2 Amorim, F. P.
Rocha, A. R.
Muniz, R. B.
Lewenkopf, C.
Ferreira, M. S.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Dublin 2
Saõ Paulo State University
Universidade Federal Fluminense (UFF)
Trinity College Dublin
dc.contributor.author.fl_str_mv Mukim, S.
Amorim, F. P.
Rocha, A. R.
Muniz, R. B.
Lewenkopf, C.
Ferreira, M. S.
description It is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust, and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-15
2022-04-29T08:45:29Z
2022-04-29T08:45:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevB.102.075409
Physical Review B, v. 102, n. 7, 2020.
2469-9969
2469-9950
http://hdl.handle.net/11449/231450
10.1103/PhysRevB.102.075409
2-s2.0-85090114731
url http://dx.doi.org/10.1103/PhysRevB.102.075409
http://hdl.handle.net/11449/231450
identifier_str_mv Physical Review B, v. 102, n. 7, 2020.
2469-9969
2469-9950
10.1103/PhysRevB.102.075409
2-s2.0-85090114731
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review B
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129394032508928