Disorder information from conductance: A quantum inverse problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevB.102.075409 http://hdl.handle.net/11449/231450 |
Resumo: | It is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust, and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements. |
id |
UNSP_c24e0784a1c86ecd1f720e997fc6786e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/231450 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Disorder information from conductance: A quantum inverse problemIt is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust, and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements.School of Physics Trinity College Dublin Dublin 2Instituto de Física Teórica Saõ Paulo State UniversityInstituto de Física Universidade Federal FluminenseCentre for Research on Adaptive Nanostructures and Nanodevices (CRANN) Advanced Materials and Bioengineering Research (AMBER) Centre Trinity College DublinDublin 2Saõ Paulo State UniversityUniversidade Federal Fluminense (UFF)Trinity College DublinMukim, S.Amorim, F. P.Rocha, A. R.Muniz, R. B.Lewenkopf, C.Ferreira, M. S.2022-04-29T08:45:29Z2022-04-29T08:45:29Z2020-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevB.102.075409Physical Review B, v. 102, n. 7, 2020.2469-99692469-9950http://hdl.handle.net/11449/23145010.1103/PhysRevB.102.0754092-s2.0-85090114731Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Binfo:eu-repo/semantics/openAccess2022-04-29T08:45:29Zoai:repositorio.unesp.br:11449/231450Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:07:19.581567Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Disorder information from conductance: A quantum inverse problem |
title |
Disorder information from conductance: A quantum inverse problem |
spellingShingle |
Disorder information from conductance: A quantum inverse problem Mukim, S. |
title_short |
Disorder information from conductance: A quantum inverse problem |
title_full |
Disorder information from conductance: A quantum inverse problem |
title_fullStr |
Disorder information from conductance: A quantum inverse problem |
title_full_unstemmed |
Disorder information from conductance: A quantum inverse problem |
title_sort |
Disorder information from conductance: A quantum inverse problem |
author |
Mukim, S. |
author_facet |
Mukim, S. Amorim, F. P. Rocha, A. R. Muniz, R. B. Lewenkopf, C. Ferreira, M. S. |
author_role |
author |
author2 |
Amorim, F. P. Rocha, A. R. Muniz, R. B. Lewenkopf, C. Ferreira, M. S. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Dublin 2 Saõ Paulo State University Universidade Federal Fluminense (UFF) Trinity College Dublin |
dc.contributor.author.fl_str_mv |
Mukim, S. Amorim, F. P. Rocha, A. R. Muniz, R. B. Lewenkopf, C. Ferreira, M. S. |
description |
It is straightforward to calculate the conductance of a quantum device once all its scattering centers are fully specified. However, to do this in reverse, i.e., to find information about the composition of scatterers in a device from its conductance, is an elusive task. This is particularly more challenging in the presence of disorder. Here we propose a procedure in which valuable compositional information can be extracted from the seemingly noisy spectral conductance of a two-terminal disordered quantum device. In particular, we put forward an inversion methodology that can identify the nature and respective concentration of randomly-distributed impurities by analyzing energy-dependent conductance fingerprints. Results are shown for graphene nanoribbons as a case in point using both tight-binding and density functional theory simulations, indicating that this inversion technique is general, robust, and can be employed to extract structural and compositional information of disordered mesoscopic devices from standard conductance measurements. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-15 2022-04-29T08:45:29Z 2022-04-29T08:45:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevB.102.075409 Physical Review B, v. 102, n. 7, 2020. 2469-9969 2469-9950 http://hdl.handle.net/11449/231450 10.1103/PhysRevB.102.075409 2-s2.0-85090114731 |
url |
http://dx.doi.org/10.1103/PhysRevB.102.075409 http://hdl.handle.net/11449/231450 |
identifier_str_mv |
Physical Review B, v. 102, n. 7, 2020. 2469-9969 2469-9950 10.1103/PhysRevB.102.075409 2-s2.0-85090114731 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review B |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129394032508928 |