Continuous-variable supraquantum nonlocality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevA.97.012133 http://hdl.handle.net/11449/175822 |
Resumo: | Supraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems. |
id |
UNSP_c25ab41c989b8032aa2a282a0cdd6020 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175822 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Continuous-variable supraquantum nonlocalitySupraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Naturwissenschaftlich-Technische Fakultät Universität Siegen, Walter-Flex-Str. 3Laboratoire Matériaux et Phénomènes Quantiques Sorbonne Paris Cité Université Paris Diderot CNRS UMR 7162Instituto de Física Universidade Federal Do Rio de Janeiro, Caixa Postal 68528ICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIUniversität SiegenCNRS UMR 7162Universidade Federal do Rio de Janeiro (UFRJ)Universidade Estadual Paulista (Unesp)Ketterer, AndreasLaversanne-Finot, AdrienAolita, Leandro [UNESP]2018-12-11T17:17:43Z2018-12-11T17:17:43Z2018-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1103/PhysRevA.97.012133Physical Review A, v. 97, n. 1, 2018.2469-99342469-9926http://hdl.handle.net/11449/17582210.1103/PhysRevA.97.0121332-s2.0-850414701302-s2.0-85041470130.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2024-01-18T06:31:04Zoai:repositorio.unesp.br:11449/175822Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:22:16.054499Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Continuous-variable supraquantum nonlocality |
title |
Continuous-variable supraquantum nonlocality |
spellingShingle |
Continuous-variable supraquantum nonlocality Ketterer, Andreas |
title_short |
Continuous-variable supraquantum nonlocality |
title_full |
Continuous-variable supraquantum nonlocality |
title_fullStr |
Continuous-variable supraquantum nonlocality |
title_full_unstemmed |
Continuous-variable supraquantum nonlocality |
title_sort |
Continuous-variable supraquantum nonlocality |
author |
Ketterer, Andreas |
author_facet |
Ketterer, Andreas Laversanne-Finot, Adrien Aolita, Leandro [UNESP] |
author_role |
author |
author2 |
Laversanne-Finot, Adrien Aolita, Leandro [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universität Siegen CNRS UMR 7162 Universidade Federal do Rio de Janeiro (UFRJ) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Ketterer, Andreas Laversanne-Finot, Adrien Aolita, Leandro [UNESP] |
description |
Supraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:17:43Z 2018-12-11T17:17:43Z 2018-01-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevA.97.012133 Physical Review A, v. 97, n. 1, 2018. 2469-9934 2469-9926 http://hdl.handle.net/11449/175822 10.1103/PhysRevA.97.012133 2-s2.0-85041470130 2-s2.0-85041470130.pdf |
url |
http://dx.doi.org/10.1103/PhysRevA.97.012133 http://hdl.handle.net/11449/175822 |
identifier_str_mv |
Physical Review A, v. 97, n. 1, 2018. 2469-9934 2469-9926 10.1103/PhysRevA.97.012133 2-s2.0-85041470130 2-s2.0-85041470130.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review A |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129512186052608 |