Continuous-variable supraquantum nonlocality

Detalhes bibliográficos
Autor(a) principal: Ketterer, Andreas
Data de Publicação: 2018
Outros Autores: Laversanne-Finot, Adrien, Aolita, Leandro [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevA.97.012133
http://hdl.handle.net/11449/175822
Resumo: Supraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems.
id UNSP_c25ab41c989b8032aa2a282a0cdd6020
oai_identifier_str oai:repositorio.unesp.br:11449/175822
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Continuous-variable supraquantum nonlocalitySupraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Naturwissenschaftlich-Technische Fakultät Universität Siegen, Walter-Flex-Str. 3Laboratoire Matériaux et Phénomènes Quantiques Sorbonne Paris Cité Université Paris Diderot CNRS UMR 7162Instituto de Física Universidade Federal Do Rio de Janeiro, Caixa Postal 68528ICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIICTP South American Institute for Fundamental Research Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIUniversität SiegenCNRS UMR 7162Universidade Federal do Rio de Janeiro (UFRJ)Universidade Estadual Paulista (Unesp)Ketterer, AndreasLaversanne-Finot, AdrienAolita, Leandro [UNESP]2018-12-11T17:17:43Z2018-12-11T17:17:43Z2018-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1103/PhysRevA.97.012133Physical Review A, v. 97, n. 1, 2018.2469-99342469-9926http://hdl.handle.net/11449/17582210.1103/PhysRevA.97.0121332-s2.0-850414701302-s2.0-85041470130.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2024-01-18T06:31:04Zoai:repositorio.unesp.br:11449/175822Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:22:16.054499Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Continuous-variable supraquantum nonlocality
title Continuous-variable supraquantum nonlocality
spellingShingle Continuous-variable supraquantum nonlocality
Ketterer, Andreas
title_short Continuous-variable supraquantum nonlocality
title_full Continuous-variable supraquantum nonlocality
title_fullStr Continuous-variable supraquantum nonlocality
title_full_unstemmed Continuous-variable supraquantum nonlocality
title_sort Continuous-variable supraquantum nonlocality
author Ketterer, Andreas
author_facet Ketterer, Andreas
Laversanne-Finot, Adrien
Aolita, Leandro [UNESP]
author_role author
author2 Laversanne-Finot, Adrien
Aolita, Leandro [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universität Siegen
CNRS UMR 7162
Universidade Federal do Rio de Janeiro (UFRJ)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ketterer, Andreas
Laversanne-Finot, Adrien
Aolita, Leandro [UNESP]
description Supraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light communication principle. While supraquantum correlations are relatively well understood for finite-dimensional systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures, instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell inequality. We then introduce the continuous-variable version of the celebrated Popescu-Rohrlich (PR) boxes, as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable systems.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:17:43Z
2018-12-11T17:17:43Z
2018-01-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevA.97.012133
Physical Review A, v. 97, n. 1, 2018.
2469-9934
2469-9926
http://hdl.handle.net/11449/175822
10.1103/PhysRevA.97.012133
2-s2.0-85041470130
2-s2.0-85041470130.pdf
url http://dx.doi.org/10.1103/PhysRevA.97.012133
http://hdl.handle.net/11449/175822
identifier_str_mv Physical Review A, v. 97, n. 1, 2018.
2469-9934
2469-9926
10.1103/PhysRevA.97.012133
2-s2.0-85041470130
2-s2.0-85041470130.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review A
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129512186052608