Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]

Detalhes bibliográficos
Autor(a) principal: Guido, Rodrigo Capobianco [UNESP]
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/MSP.2017.2672759
http://hdl.handle.net/11449/179326
Resumo: Following two decades of research focusing on the discrete wavelet transform (DWT) and driven by students' high level of questioning, I decided to write this essay on one of the most significant tools for time-frequency signal analysis. As it is widely applicable in a variety of fields, I invite readers to follow this lecture note, which is specially dedicated to show a practical strategy for the interpretation of DWT-based transformed signals while extracting useful information from them. The particular focus resides on the procedure used to find the time support of frequencies and how it is influenced by the wavelet family and the support size of corresponding filters.
id UNSP_c26a3357720f4e19d1c8a6f33c1550a5
oai_identifier_str oai:repositorio.unesp.br:11449/179326
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]Following two decades of research focusing on the discrete wavelet transform (DWT) and driven by students' high level of questioning, I decided to write this essay on one of the most significant tools for time-frequency signal analysis. As it is widely applicable in a variety of fields, I invite readers to follow this lecture note, which is specially dedicated to show a practical strategy for the interpretation of DWT-based transformed signals while extracting useful information from them. The particular focus resides on the procedure used to find the time support of frequencies and how it is influenced by the wavelet family and the support size of corresponding filters.São Paulo State University (UNESP)São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Guido, Rodrigo Capobianco [UNESP]2018-12-11T17:34:43Z2018-12-11T17:34:43Z2017-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1109/MSP.2017.2672759IEEE Signal Processing Magazine, v. 34, n. 3, 2017.1053-5888http://hdl.handle.net/11449/17932610.1109/MSP.2017.26727592-s2.0-850327519012-s2.0-85032751901.pdf65420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIEEE Signal Processing Magazine1,747info:eu-repo/semantics/openAccess2023-11-27T06:13:38Zoai:repositorio.unesp.br:11449/179326Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:50:53.577688Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
title Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
spellingShingle Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
Guido, Rodrigo Capobianco [UNESP]
title_short Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
title_full Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
title_fullStr Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
title_full_unstemmed Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
title_sort Effectively Interpreting Discrete Wavelet Transformed Signals [Lecture Notes]
author Guido, Rodrigo Capobianco [UNESP]
author_facet Guido, Rodrigo Capobianco [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Guido, Rodrigo Capobianco [UNESP]
description Following two decades of research focusing on the discrete wavelet transform (DWT) and driven by students' high level of questioning, I decided to write this essay on one of the most significant tools for time-frequency signal analysis. As it is widely applicable in a variety of fields, I invite readers to follow this lecture note, which is specially dedicated to show a practical strategy for the interpretation of DWT-based transformed signals while extracting useful information from them. The particular focus resides on the procedure used to find the time support of frequencies and how it is influenced by the wavelet family and the support size of corresponding filters.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-01
2018-12-11T17:34:43Z
2018-12-11T17:34:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/MSP.2017.2672759
IEEE Signal Processing Magazine, v. 34, n. 3, 2017.
1053-5888
http://hdl.handle.net/11449/179326
10.1109/MSP.2017.2672759
2-s2.0-85032751901
2-s2.0-85032751901.pdf
6542086226808067
0000-0002-0924-8024
url http://dx.doi.org/10.1109/MSP.2017.2672759
http://hdl.handle.net/11449/179326
identifier_str_mv IEEE Signal Processing Magazine, v. 34, n. 3, 2017.
1053-5888
10.1109/MSP.2017.2672759
2-s2.0-85032751901
2-s2.0-85032751901.pdf
6542086226808067
0000-0002-0924-8024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IEEE Signal Processing Magazine
1,747
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128990334943232