Barrett's esophagus analysis using infinity Restricted Boltzmann Machines

Detalhes bibliográficos
Autor(a) principal: Passos, Leandro A.
Data de Publicação: 2019
Outros Autores: de Souza, Luis A., Mendel, Robert, Ebigbo, Alanna, Probst, Andreas, Messmann, Helmut, Palm, Christoph, Papa, João Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jvcir.2019.01.043
http://hdl.handle.net/11449/190097
Resumo: The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.
id UNSP_c425d5d98e5e999f4e4c86e5a645ad06
oai_identifier_str oai:repositorio.unesp.br:11449/190097
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Barrett's esophagus analysis using infinity Restricted Boltzmann MachinesBarrett's esophagusDeep learningInfinity Restricted Boltzmann MachinesMeta-heuristicsThe number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)UFSCAR – Federal University of São Carlos Department of ComputingMedizinische Klinik – Klinikum Augsburg IIIOTH Regensburg – Ostbayerische Technische Hochschule Regensburg Regensburg Medical Image Computing (ReMIC)OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)UNESP – São Paulo State University Department of ComputingUNESP – São Paulo State University Department of ComputingFAPESP: #2013/07375-0FAPESP: #2014/12236-1FAPESP: #2014/16250-9FAPESP: #2015/25739-4FAPESP: #2016/21243-7CNPq: #306166/2014-3CNPq: #307066/2017-7FUNDUNESP: 2597.2017Universidade Federal de São Carlos (UFSCar)Medizinische Klinik – Klinikum Augsburg IIIRegensburg Medical Image Computing (ReMIC)OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)Universidade Estadual Paulista (Unesp)Passos, Leandro A.de Souza, Luis A.Mendel, RobertEbigbo, AlannaProbst, AndreasMessmann, HelmutPalm, ChristophPapa, João Paulo [UNESP]2019-10-06T17:02:09Z2019-10-06T17:02:09Z2019-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article475-485http://dx.doi.org/10.1016/j.jvcir.2019.01.043Journal of Visual Communication and Image Representation, v. 59, p. 475-485.1095-90761047-3203http://hdl.handle.net/11449/19009710.1016/j.jvcir.2019.01.0432-s2.0-85061193620Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Visual Communication and Image Representationinfo:eu-repo/semantics/openAccess2024-04-23T16:10:42Zoai:repositorio.unesp.br:11449/190097Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:09:19.930332Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
title Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
spellingShingle Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
Passos, Leandro A.
Barrett's esophagus
Deep learning
Infinity Restricted Boltzmann Machines
Meta-heuristics
title_short Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
title_full Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
title_fullStr Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
title_full_unstemmed Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
title_sort Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
author Passos, Leandro A.
author_facet Passos, Leandro A.
de Souza, Luis A.
Mendel, Robert
Ebigbo, Alanna
Probst, Andreas
Messmann, Helmut
Palm, Christoph
Papa, João Paulo [UNESP]
author_role author
author2 de Souza, Luis A.
Mendel, Robert
Ebigbo, Alanna
Probst, Andreas
Messmann, Helmut
Palm, Christoph
Papa, João Paulo [UNESP]
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Medizinische Klinik – Klinikum Augsburg III
Regensburg Medical Image Computing (ReMIC)
OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Passos, Leandro A.
de Souza, Luis A.
Mendel, Robert
Ebigbo, Alanna
Probst, Andreas
Messmann, Helmut
Palm, Christoph
Papa, João Paulo [UNESP]
dc.subject.por.fl_str_mv Barrett's esophagus
Deep learning
Infinity Restricted Boltzmann Machines
Meta-heuristics
topic Barrett's esophagus
Deep learning
Infinity Restricted Boltzmann Machines
Meta-heuristics
description The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T17:02:09Z
2019-10-06T17:02:09Z
2019-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jvcir.2019.01.043
Journal of Visual Communication and Image Representation, v. 59, p. 475-485.
1095-9076
1047-3203
http://hdl.handle.net/11449/190097
10.1016/j.jvcir.2019.01.043
2-s2.0-85061193620
url http://dx.doi.org/10.1016/j.jvcir.2019.01.043
http://hdl.handle.net/11449/190097
identifier_str_mv Journal of Visual Communication and Image Representation, v. 59, p. 475-485.
1095-9076
1047-3203
10.1016/j.jvcir.2019.01.043
2-s2.0-85061193620
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Visual Communication and Image Representation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 475-485
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128323207823360