Barrett's esophagus analysis using infinity Restricted Boltzmann Machines
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jvcir.2019.01.043 http://hdl.handle.net/11449/190097 |
Resumo: | The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task. |
id |
UNSP_c425d5d98e5e999f4e4c86e5a645ad06 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/190097 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Barrett's esophagus analysis using infinity Restricted Boltzmann MachinesBarrett's esophagusDeep learningInfinity Restricted Boltzmann MachinesMeta-heuristicsThe number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)UFSCAR – Federal University of São Carlos Department of ComputingMedizinische Klinik – Klinikum Augsburg IIIOTH Regensburg – Ostbayerische Technische Hochschule Regensburg Regensburg Medical Image Computing (ReMIC)OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)UNESP – São Paulo State University Department of ComputingUNESP – São Paulo State University Department of ComputingFAPESP: #2013/07375-0FAPESP: #2014/12236-1FAPESP: #2014/16250-9FAPESP: #2015/25739-4FAPESP: #2016/21243-7CNPq: #306166/2014-3CNPq: #307066/2017-7FUNDUNESP: 2597.2017Universidade Federal de São Carlos (UFSCar)Medizinische Klinik – Klinikum Augsburg IIIRegensburg Medical Image Computing (ReMIC)OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST)Universidade Estadual Paulista (Unesp)Passos, Leandro A.de Souza, Luis A.Mendel, RobertEbigbo, AlannaProbst, AndreasMessmann, HelmutPalm, ChristophPapa, João Paulo [UNESP]2019-10-06T17:02:09Z2019-10-06T17:02:09Z2019-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article475-485http://dx.doi.org/10.1016/j.jvcir.2019.01.043Journal of Visual Communication and Image Representation, v. 59, p. 475-485.1095-90761047-3203http://hdl.handle.net/11449/19009710.1016/j.jvcir.2019.01.0432-s2.0-85061193620Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Visual Communication and Image Representationinfo:eu-repo/semantics/openAccess2024-04-23T16:10:42Zoai:repositorio.unesp.br:11449/190097Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:09:19.930332Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines |
title |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines |
spellingShingle |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines Passos, Leandro A. Barrett's esophagus Deep learning Infinity Restricted Boltzmann Machines Meta-heuristics |
title_short |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines |
title_full |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines |
title_fullStr |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines |
title_full_unstemmed |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines |
title_sort |
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines |
author |
Passos, Leandro A. |
author_facet |
Passos, Leandro A. de Souza, Luis A. Mendel, Robert Ebigbo, Alanna Probst, Andreas Messmann, Helmut Palm, Christoph Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
de Souza, Luis A. Mendel, Robert Ebigbo, Alanna Probst, Andreas Messmann, Helmut Palm, Christoph Papa, João Paulo [UNESP] |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Medizinische Klinik – Klinikum Augsburg III Regensburg Medical Image Computing (ReMIC) OTH Regensburg – Regensburg Center of Health Sciences and Technology (RCHST) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Passos, Leandro A. de Souza, Luis A. Mendel, Robert Ebigbo, Alanna Probst, Andreas Messmann, Helmut Palm, Christoph Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Barrett's esophagus Deep learning Infinity Restricted Boltzmann Machines Meta-heuristics |
topic |
Barrett's esophagus Deep learning Infinity Restricted Boltzmann Machines Meta-heuristics |
description |
The number of patients with Barret's esophagus (BE) has increased in the last decades. Considering the dangerousness of the disease and its evolution to adenocarcinoma, an early diagnosis of BE may provide a high probability of cancer remission. However, limitations regarding traditional methods of detection and management of BE demand alternative solutions. As such, computer-aided tools have been recently used to assist in this problem, but the challenge still persists. To manage the problem, we introduce the infinity Restricted Boltzmann Machines (iRBMs) to the task of automatic identification of Barrett's esophagus from endoscopic images of the lower esophagus. Moreover, since iRBM requires a proper selection of its meta-parameters, we also present a discriminative iRBM fine-tuning using six meta-heuristic optimization techniques. We showed that iRBMs are suitable for the context since it provides competitive results, as well as the meta-heuristic techniques showed to be appropriate for such task. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T17:02:09Z 2019-10-06T17:02:09Z 2019-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jvcir.2019.01.043 Journal of Visual Communication and Image Representation, v. 59, p. 475-485. 1095-9076 1047-3203 http://hdl.handle.net/11449/190097 10.1016/j.jvcir.2019.01.043 2-s2.0-85061193620 |
url |
http://dx.doi.org/10.1016/j.jvcir.2019.01.043 http://hdl.handle.net/11449/190097 |
identifier_str_mv |
Journal of Visual Communication and Image Representation, v. 59, p. 475-485. 1095-9076 1047-3203 10.1016/j.jvcir.2019.01.043 2-s2.0-85061193620 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Visual Communication and Image Representation |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
475-485 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128323207823360 |