Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/191936 |
Resumo: | The electromechanical impedance (EMI) has attracted increasing attention as an effective sensor monitoring technique for applications in many engineering sectors. Due to the considerable potential of lead zirconate titanate (PZT) diaphragm transducers in terms of excellent electromechanical coupling properties, low implementation cost and wide-band frequency response, this technique provides a new alternative approach for tool condition monitoring (TCM) in grinding processes competing with the conventional and expensive indirect sensor monitoring methods. This research work aimed to develop a new approach for TCM in dressing operation using the PZT-EMI-based technique in cooperation with machine learning algorithms. The research activities proposed in this work involved in diagnosing different wear and failure ranges on dressing tools through experimental tests of dressing operation into different dressing conditions. Further, the proposed system was tested for sensory position independence and for different types of dressing tools to ensure its capability for real-time application. The proposed approach was validated on the basis of the dressing tool condition information obtained from representative damage indices computed at different frequency bands. The proposed intelligent diagnosis system was able to select the most damage-sensitive features, such as damage classification and location, based on the optimal selection of the suitable frequency band. The best results showed less than 2% of general average errors to determine the actual tool condition. This thesis contributes to an effective monitoring system of the dressing operation capable of avoiding replacement of the dressing tool before the end of its service life as well as the operation being performed with damaged tools, since the proposed approach can identify different sates of the tool life span |
id |
UNSP_c4ba2c28d07b497e2c07cb33194f6e74 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/191936 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learningMonitoramento da condição da ferramenta no processo de dressagem usando impedância eletromecânica e aprendizagem de máquinaTool condition monitoringGrindingDressing processElectromechanical impedancePZTMachine learningMonitoramento da condição da ferramentaRetificaçãoProcesso de dressagemImpedância eletromecânicaAprendizagem de máquinaThe electromechanical impedance (EMI) has attracted increasing attention as an effective sensor monitoring technique for applications in many engineering sectors. Due to the considerable potential of lead zirconate titanate (PZT) diaphragm transducers in terms of excellent electromechanical coupling properties, low implementation cost and wide-band frequency response, this technique provides a new alternative approach for tool condition monitoring (TCM) in grinding processes competing with the conventional and expensive indirect sensor monitoring methods. This research work aimed to develop a new approach for TCM in dressing operation using the PZT-EMI-based technique in cooperation with machine learning algorithms. The research activities proposed in this work involved in diagnosing different wear and failure ranges on dressing tools through experimental tests of dressing operation into different dressing conditions. Further, the proposed system was tested for sensory position independence and for different types of dressing tools to ensure its capability for real-time application. The proposed approach was validated on the basis of the dressing tool condition information obtained from representative damage indices computed at different frequency bands. The proposed intelligent diagnosis system was able to select the most damage-sensitive features, such as damage classification and location, based on the optimal selection of the suitable frequency band. The best results showed less than 2% of general average errors to determine the actual tool condition. This thesis contributes to an effective monitoring system of the dressing operation capable of avoiding replacement of the dressing tool before the end of its service life as well as the operation being performed with damaged tools, since the proposed approach can identify different sates of the tool life spanA impedância eletromecânica (EMI – electromechanical impedance) tem atraído cada vez mais atenção como uma técnica eficiente de monitoramento a base de sensores em diversos setores de engenharia. Devido ao considerável potencial dos transdutores piezelétricos de titanato e zirconato de chumbo (PZT) do tipo diafragmas em termos de excelentes propriedades de acoplamento eletromecânico, baixo custo de implementação e resposta a uma banda ampla de frequência, esta técnica fornece uma nova alternativa para monitoramento da condição de ferramentas (TCM – tool condition monitoring) no processo de retificação competindo com os métodos convencionais e caros de monitoramento indireto por sensores. Assim, a presente pesquisa visou desenvolver uma nova abordagem para o TCM na operação de dressagem por meio do método EMI-PZT em conjunto a algoritmos de aprendizado de máquina (machine learning). As atividades de pesquisa propostas neste trabalho envolveram o diagnóstico de diferentes níveis de desgaste e de falhas nas ferramentas de dressagem por meio de ensaios experimentais em diferentes condições de dressagem. O sistema proposto também foi testado para diferentes posições de transdutores quanto à aquisição de dados, bem como para diferentes tipos de dressadores visando expandir sua capacidade de aplicação em tempo real. O sistema proposto foi validado com base na informação da condição da ferramenta de dressagem extraída por meio de índices de danos calculados para diferentes bandas de frequência. O sistema inteligente foi capaz de selecionar as características mais sensíveis ao dano, tais como classificação e localização de danos, com base na seleção da faixa de frequência ideal. Os resultados mais satisfatórios apresentaram erros gerais abaixo de 2% quando da determinação da condição real da ferramenta de dressagem. Esta tese contribui com a proposta de um sistema de monitoramento da operação de dressagem eficaz e capaz de evitar a substituição da ferramenta antes do tempo, bem como que a operação de dressagem seja realizada com dressadores danificados, uma vez que o sistema proposto pode identificar diferentes estágios da vida útil da ferramenta de dressagem.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2016/02831-52017/16921-9Universidade Estadual Paulista (Unesp)Aguiar, Paulo Roberto de [UNESP]Baptista, Fabricio Guimarães [UNESP]D’addona, Doriana MarilenaUniversidade Estadual Paulista (Unesp)Conceição Junior, Pedro de Oliveira2020-03-23T01:06:03Z2020-03-23T01:06:03Z2020-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/19193600092980333004056087P224263302049198140000-0002-1200-4354enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T19:22:09Zoai:repositorio.unesp.br:11449/191936Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:32:55.498694Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning Monitoramento da condição da ferramenta no processo de dressagem usando impedância eletromecânica e aprendizagem de máquina |
title |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning |
spellingShingle |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning Conceição Junior, Pedro de Oliveira Tool condition monitoring Grinding Dressing process Electromechanical impedance PZT Machine learning Monitoramento da condição da ferramenta Retificação Processo de dressagem Impedância eletromecânica Aprendizagem de máquina |
title_short |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning |
title_full |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning |
title_fullStr |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning |
title_full_unstemmed |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning |
title_sort |
Tool condition monitoring in the dressing process through electromechanical impedance and machine learning |
author |
Conceição Junior, Pedro de Oliveira |
author_facet |
Conceição Junior, Pedro de Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Aguiar, Paulo Roberto de [UNESP] Baptista, Fabricio Guimarães [UNESP] D’addona, Doriana Marilena Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Conceição Junior, Pedro de Oliveira |
dc.subject.por.fl_str_mv |
Tool condition monitoring Grinding Dressing process Electromechanical impedance PZT Machine learning Monitoramento da condição da ferramenta Retificação Processo de dressagem Impedância eletromecânica Aprendizagem de máquina |
topic |
Tool condition monitoring Grinding Dressing process Electromechanical impedance PZT Machine learning Monitoramento da condição da ferramenta Retificação Processo de dressagem Impedância eletromecânica Aprendizagem de máquina |
description |
The electromechanical impedance (EMI) has attracted increasing attention as an effective sensor monitoring technique for applications in many engineering sectors. Due to the considerable potential of lead zirconate titanate (PZT) diaphragm transducers in terms of excellent electromechanical coupling properties, low implementation cost and wide-band frequency response, this technique provides a new alternative approach for tool condition monitoring (TCM) in grinding processes competing with the conventional and expensive indirect sensor monitoring methods. This research work aimed to develop a new approach for TCM in dressing operation using the PZT-EMI-based technique in cooperation with machine learning algorithms. The research activities proposed in this work involved in diagnosing different wear and failure ranges on dressing tools through experimental tests of dressing operation into different dressing conditions. Further, the proposed system was tested for sensory position independence and for different types of dressing tools to ensure its capability for real-time application. The proposed approach was validated on the basis of the dressing tool condition information obtained from representative damage indices computed at different frequency bands. The proposed intelligent diagnosis system was able to select the most damage-sensitive features, such as damage classification and location, based on the optimal selection of the suitable frequency band. The best results showed less than 2% of general average errors to determine the actual tool condition. This thesis contributes to an effective monitoring system of the dressing operation capable of avoiding replacement of the dressing tool before the end of its service life as well as the operation being performed with damaged tools, since the proposed approach can identify different sates of the tool life span |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-23T01:06:03Z 2020-03-23T01:06:03Z 2020-03-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/191936 000929803 33004056087P2 2426330204919814 0000-0002-1200-4354 |
url |
http://hdl.handle.net/11449/191936 |
identifier_str_mv |
000929803 33004056087P2 2426330204919814 0000-0002-1200-4354 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129333348270080 |