Tool condition monitoring in the dressing process through electromechanical impedance and machine learning

Detalhes bibliográficos
Autor(a) principal: Conceição Junior, Pedro de Oliveira
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/191936
Resumo: The electromechanical impedance (EMI) has attracted increasing attention as an effective sensor monitoring technique for applications in many engineering sectors. Due to the considerable potential of lead zirconate titanate (PZT) diaphragm transducers in terms of excellent electromechanical coupling properties, low implementation cost and wide-band frequency response, this technique provides a new alternative approach for tool condition monitoring (TCM) in grinding processes competing with the conventional and expensive indirect sensor monitoring methods. This research work aimed to develop a new approach for TCM in dressing operation using the PZT-EMI-based technique in cooperation with machine learning algorithms. The research activities proposed in this work involved in diagnosing different wear and failure ranges on dressing tools through experimental tests of dressing operation into different dressing conditions. Further, the proposed system was tested for sensory position independence and for different types of dressing tools to ensure its capability for real-time application. The proposed approach was validated on the basis of the dressing tool condition information obtained from representative damage indices computed at different frequency bands. The proposed intelligent diagnosis system was able to select the most damage-sensitive features, such as damage classification and location, based on the optimal selection of the suitable frequency band. The best results showed less than 2% of general average errors to determine the actual tool condition. This thesis contributes to an effective monitoring system of the dressing operation capable of avoiding replacement of the dressing tool before the end of its service life as well as the operation being performed with damaged tools, since the proposed approach can identify different sates of the tool life span
id UNSP_c4ba2c28d07b497e2c07cb33194f6e74
oai_identifier_str oai:repositorio.unesp.br:11449/191936
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Tool condition monitoring in the dressing process through electromechanical impedance and machine learningMonitoramento da condição da ferramenta no processo de dressagem usando impedância eletromecânica e aprendizagem de máquinaTool condition monitoringGrindingDressing processElectromechanical impedancePZTMachine learningMonitoramento da condição da ferramentaRetificaçãoProcesso de dressagemImpedância eletromecânicaAprendizagem de máquinaThe electromechanical impedance (EMI) has attracted increasing attention as an effective sensor monitoring technique for applications in many engineering sectors. Due to the considerable potential of lead zirconate titanate (PZT) diaphragm transducers in terms of excellent electromechanical coupling properties, low implementation cost and wide-band frequency response, this technique provides a new alternative approach for tool condition monitoring (TCM) in grinding processes competing with the conventional and expensive indirect sensor monitoring methods. This research work aimed to develop a new approach for TCM in dressing operation using the PZT-EMI-based technique in cooperation with machine learning algorithms. The research activities proposed in this work involved in diagnosing different wear and failure ranges on dressing tools through experimental tests of dressing operation into different dressing conditions. Further, the proposed system was tested for sensory position independence and for different types of dressing tools to ensure its capability for real-time application. The proposed approach was validated on the basis of the dressing tool condition information obtained from representative damage indices computed at different frequency bands. The proposed intelligent diagnosis system was able to select the most damage-sensitive features, such as damage classification and location, based on the optimal selection of the suitable frequency band. The best results showed less than 2% of general average errors to determine the actual tool condition. This thesis contributes to an effective monitoring system of the dressing operation capable of avoiding replacement of the dressing tool before the end of its service life as well as the operation being performed with damaged tools, since the proposed approach can identify different sates of the tool life spanA impedância eletromecânica (EMI – electromechanical impedance) tem atraído cada vez mais atenção como uma técnica eficiente de monitoramento a base de sensores em diversos setores de engenharia. Devido ao considerável potencial dos transdutores piezelétricos de titanato e zirconato de chumbo (PZT) do tipo diafragmas em termos de excelentes propriedades de acoplamento eletromecânico, baixo custo de implementação e resposta a uma banda ampla de frequência, esta técnica fornece uma nova alternativa para monitoramento da condição de ferramentas (TCM – tool condition monitoring) no processo de retificação competindo com os métodos convencionais e caros de monitoramento indireto por sensores. Assim, a presente pesquisa visou desenvolver uma nova abordagem para o TCM na operação de dressagem por meio do método EMI-PZT em conjunto a algoritmos de aprendizado de máquina (machine learning). As atividades de pesquisa propostas neste trabalho envolveram o diagnóstico de diferentes níveis de desgaste e de falhas nas ferramentas de dressagem por meio de ensaios experimentais em diferentes condições de dressagem. O sistema proposto também foi testado para diferentes posições de transdutores quanto à aquisição de dados, bem como para diferentes tipos de dressadores visando expandir sua capacidade de aplicação em tempo real. O sistema proposto foi validado com base na informação da condição da ferramenta de dressagem extraída por meio de índices de danos calculados para diferentes bandas de frequência. O sistema inteligente foi capaz de selecionar as características mais sensíveis ao dano, tais como classificação e localização de danos, com base na seleção da faixa de frequência ideal. Os resultados mais satisfatórios apresentaram erros gerais abaixo de 2% quando da determinação da condição real da ferramenta de dressagem. Esta tese contribui com a proposta de um sistema de monitoramento da operação de dressagem eficaz e capaz de evitar a substituição da ferramenta antes do tempo, bem como que a operação de dressagem seja realizada com dressadores danificados, uma vez que o sistema proposto pode identificar diferentes estágios da vida útil da ferramenta de dressagem.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2016/02831-52017/16921-9Universidade Estadual Paulista (Unesp)Aguiar, Paulo Roberto de [UNESP]Baptista, Fabricio Guimarães [UNESP]D’addona, Doriana MarilenaUniversidade Estadual Paulista (Unesp)Conceição Junior, Pedro de Oliveira2020-03-23T01:06:03Z2020-03-23T01:06:03Z2020-03-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/19193600092980333004056087P224263302049198140000-0002-1200-4354enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T19:22:09Zoai:repositorio.unesp.br:11449/191936Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:32:55.498694Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
Monitoramento da condição da ferramenta no processo de dressagem usando impedância eletromecânica e aprendizagem de máquina
title Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
spellingShingle Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
Conceição Junior, Pedro de Oliveira
Tool condition monitoring
Grinding
Dressing process
Electromechanical impedance
PZT
Machine learning
Monitoramento da condição da ferramenta
Retificação
Processo de dressagem
Impedância eletromecânica
Aprendizagem de máquina
title_short Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
title_full Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
title_fullStr Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
title_full_unstemmed Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
title_sort Tool condition monitoring in the dressing process through electromechanical impedance and machine learning
author Conceição Junior, Pedro de Oliveira
author_facet Conceição Junior, Pedro de Oliveira
author_role author
dc.contributor.none.fl_str_mv Aguiar, Paulo Roberto de [UNESP]
Baptista, Fabricio Guimarães [UNESP]
D’addona, Doriana Marilena
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Conceição Junior, Pedro de Oliveira
dc.subject.por.fl_str_mv Tool condition monitoring
Grinding
Dressing process
Electromechanical impedance
PZT
Machine learning
Monitoramento da condição da ferramenta
Retificação
Processo de dressagem
Impedância eletromecânica
Aprendizagem de máquina
topic Tool condition monitoring
Grinding
Dressing process
Electromechanical impedance
PZT
Machine learning
Monitoramento da condição da ferramenta
Retificação
Processo de dressagem
Impedância eletromecânica
Aprendizagem de máquina
description The electromechanical impedance (EMI) has attracted increasing attention as an effective sensor monitoring technique for applications in many engineering sectors. Due to the considerable potential of lead zirconate titanate (PZT) diaphragm transducers in terms of excellent electromechanical coupling properties, low implementation cost and wide-band frequency response, this technique provides a new alternative approach for tool condition monitoring (TCM) in grinding processes competing with the conventional and expensive indirect sensor monitoring methods. This research work aimed to develop a new approach for TCM in dressing operation using the PZT-EMI-based technique in cooperation with machine learning algorithms. The research activities proposed in this work involved in diagnosing different wear and failure ranges on dressing tools through experimental tests of dressing operation into different dressing conditions. Further, the proposed system was tested for sensory position independence and for different types of dressing tools to ensure its capability for real-time application. The proposed approach was validated on the basis of the dressing tool condition information obtained from representative damage indices computed at different frequency bands. The proposed intelligent diagnosis system was able to select the most damage-sensitive features, such as damage classification and location, based on the optimal selection of the suitable frequency band. The best results showed less than 2% of general average errors to determine the actual tool condition. This thesis contributes to an effective monitoring system of the dressing operation capable of avoiding replacement of the dressing tool before the end of its service life as well as the operation being performed with damaged tools, since the proposed approach can identify different sates of the tool life span
publishDate 2020
dc.date.none.fl_str_mv 2020-03-23T01:06:03Z
2020-03-23T01:06:03Z
2020-03-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/191936
000929803
33004056087P2
2426330204919814
0000-0002-1200-4354
url http://hdl.handle.net/11449/191936
identifier_str_mv 000929803
33004056087P2
2426330204919814
0000-0002-1200-4354
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129333348270080