Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/met10081106 http://hdl.handle.net/11449/199337 |
Resumo: | With little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure surface modification influences cell behavior and antimicrobial activity. So, this study investigates the corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and annealed in 450◦C, 530◦C and 600◦C (5◦C/min). The electrochemical behavior was evaluated by three electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic polarization curves were obtained with a potentiostat. The sample was characterized by scanning electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic (<90◦). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing at 450◦C, 530◦C and 600◦C; the exceptions were the anodized-without-annealing treatment and without-surface-modification alloys. The electrochemical behavior of the five groups investigated showed similar high resistance to corrosion solution under all conditions. |
id |
UNSP_c51b6ba52267c6476d8d78e0409b3dcf |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/199337 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloyAnnealing temperatureCorrosion resistanceTiO2 nanotubeTi–30Ta alloyWith little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure surface modification influences cell behavior and antimicrobial activity. So, this study investigates the corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and annealed in 450◦C, 530◦C and 600◦C (5◦C/min). The electrochemical behavior was evaluated by three electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic polarization curves were obtained with a potentiostat. The sample was characterized by scanning electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic (<90◦). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing at 450◦C, 530◦C and 600◦C; the exceptions were the anodized-without-annealing treatment and without-surface-modification alloys. The electrochemical behavior of the five groups investigated showed similar high resistance to corrosion solution under all conditions.Association for Progressive CommunicationsConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institute of Physics and Chemistry Unifei-Federal University of Itajubá, Av. BPS, 1303Institute of Mechanical Engineering Unifei-Federal University of Itajubá, Av. BPS, 1303Faculty of Mechanical Engineering Unicamp-State University of Campinas, Rua Mendeleyev, 200Department of Chemical and Energy Unesp-São Paulo State University, Av. Ariberto Pereira da Cunha, 333Department of Chemical and Energy Unesp-São Paulo State University, Av. Ariberto Pereira da Cunha, 333CNPq: 201271/2010-9CNPq: 486352/2013-7Unifei-Federal University of ItajubáUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Capellato, PatriciaSachs, DanielaVilela, Filipe BuenoMelo, Miriam M.Silva, GilbertRodrigues, Geovanide C. Zavaglia, Cecilia A.Nakazato, Roberto Z. [UNESP]Claro, Ana Paula R. A. [UNESP]2020-12-12T01:37:03Z2020-12-12T01:37:03Z2020-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-10http://dx.doi.org/10.3390/met10081106Metals, v. 10, n. 8, p. 1-10, 2020.2075-4701http://hdl.handle.net/11449/19933710.3390/met100811062-s2.0-8509025854087991910784514670000-0001-7897-1905Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMetalsinfo:eu-repo/semantics/openAccess2021-10-23T07:14:39Zoai:repositorio.unesp.br:11449/199337Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:12:52.857742Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy |
title |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy |
spellingShingle |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy Capellato, Patricia Annealing temperature Corrosion resistance TiO2 nanotube Ti–30Ta alloy |
title_short |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy |
title_full |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy |
title_fullStr |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy |
title_full_unstemmed |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy |
title_sort |
Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy |
author |
Capellato, Patricia |
author_facet |
Capellato, Patricia Sachs, Daniela Vilela, Filipe Bueno Melo, Miriam M. Silva, Gilbert Rodrigues, Geovani de C. Zavaglia, Cecilia A. Nakazato, Roberto Z. [UNESP] Claro, Ana Paula R. A. [UNESP] |
author_role |
author |
author2 |
Sachs, Daniela Vilela, Filipe Bueno Melo, Miriam M. Silva, Gilbert Rodrigues, Geovani de C. Zavaglia, Cecilia A. Nakazato, Roberto Z. [UNESP] Claro, Ana Paula R. A. [UNESP] |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Unifei-Federal University of Itajubá Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Capellato, Patricia Sachs, Daniela Vilela, Filipe Bueno Melo, Miriam M. Silva, Gilbert Rodrigues, Geovani de C. Zavaglia, Cecilia A. Nakazato, Roberto Z. [UNESP] Claro, Ana Paula R. A. [UNESP] |
dc.subject.por.fl_str_mv |
Annealing temperature Corrosion resistance TiO2 nanotube Ti–30Ta alloy |
topic |
Annealing temperature Corrosion resistance TiO2 nanotube Ti–30Ta alloy |
description |
With little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure surface modification influences cell behavior and antimicrobial activity. So, this study investigates the corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and annealed in 450◦C, 530◦C and 600◦C (5◦C/min). The electrochemical behavior was evaluated by three electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic polarization curves were obtained with a potentiostat. The sample was characterized by scanning electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic (<90◦). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing at 450◦C, 530◦C and 600◦C; the exceptions were the anodized-without-annealing treatment and without-surface-modification alloys. The electrochemical behavior of the five groups investigated showed similar high resistance to corrosion solution under all conditions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:37:03Z 2020-12-12T01:37:03Z 2020-08-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/met10081106 Metals, v. 10, n. 8, p. 1-10, 2020. 2075-4701 http://hdl.handle.net/11449/199337 10.3390/met10081106 2-s2.0-85090258540 8799191078451467 0000-0001-7897-1905 |
url |
http://dx.doi.org/10.3390/met10081106 http://hdl.handle.net/11449/199337 |
identifier_str_mv |
Metals, v. 10, n. 8, p. 1-10, 2020. 2075-4701 10.3390/met10081106 2-s2.0-85090258540 8799191078451467 0000-0001-7897-1905 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Metals |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1-10 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129173190868992 |