Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy

Detalhes bibliográficos
Autor(a) principal: Capellato, Patricia
Data de Publicação: 2020
Outros Autores: Sachs, Daniela, Vilela, Filipe Bueno, Melo, Miriam M., Silva, Gilbert, Rodrigues, Geovani, de C. Zavaglia, Cecilia A., Nakazato, Roberto Z. [UNESP], Claro, Ana Paula R. A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/met10081106
http://hdl.handle.net/11449/199337
Resumo: With little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure surface modification influences cell behavior and antimicrobial activity. So, this study investigates the corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and annealed in 450◦C, 530◦C and 600◦C (5◦C/min). The electrochemical behavior was evaluated by three electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic polarization curves were obtained with a potentiostat. The sample was characterized by scanning electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic (<90◦). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing at 450◦C, 530◦C and 600◦C; the exceptions were the anodized-without-annealing treatment and without-surface-modification alloys. The electrochemical behavior of the five groups investigated showed similar high resistance to corrosion solution under all conditions.
id UNSP_c51b6ba52267c6476d8d78e0409b3dcf
oai_identifier_str oai:repositorio.unesp.br:11449/199337
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloyAnnealing temperatureCorrosion resistanceTiO2 nanotubeTi–30Ta alloyWith little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure surface modification influences cell behavior and antimicrobial activity. So, this study investigates the corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and annealed in 450◦C, 530◦C and 600◦C (5◦C/min). The electrochemical behavior was evaluated by three electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic polarization curves were obtained with a potentiostat. The sample was characterized by scanning electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic (<90◦). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing at 450◦C, 530◦C and 600◦C; the exceptions were the anodized-without-annealing treatment and without-surface-modification alloys. The electrochemical behavior of the five groups investigated showed similar high resistance to corrosion solution under all conditions.Association for Progressive CommunicationsConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institute of Physics and Chemistry Unifei-Federal University of Itajubá, Av. BPS, 1303Institute of Mechanical Engineering Unifei-Federal University of Itajubá, Av. BPS, 1303Faculty of Mechanical Engineering Unicamp-State University of Campinas, Rua Mendeleyev, 200Department of Chemical and Energy Unesp-São Paulo State University, Av. Ariberto Pereira da Cunha, 333Department of Chemical and Energy Unesp-São Paulo State University, Av. Ariberto Pereira da Cunha, 333CNPq: 201271/2010-9CNPq: 486352/2013-7Unifei-Federal University of ItajubáUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Capellato, PatriciaSachs, DanielaVilela, Filipe BuenoMelo, Miriam M.Silva, GilbertRodrigues, Geovanide C. Zavaglia, Cecilia A.Nakazato, Roberto Z. [UNESP]Claro, Ana Paula R. A. [UNESP]2020-12-12T01:37:03Z2020-12-12T01:37:03Z2020-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-10http://dx.doi.org/10.3390/met10081106Metals, v. 10, n. 8, p. 1-10, 2020.2075-4701http://hdl.handle.net/11449/19933710.3390/met100811062-s2.0-8509025854087991910784514670000-0001-7897-1905Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMetalsinfo:eu-repo/semantics/openAccess2021-10-23T07:14:39Zoai:repositorio.unesp.br:11449/199337Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:12:52.857742Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
title Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
spellingShingle Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
Capellato, Patricia
Annealing temperature
Corrosion resistance
TiO2 nanotube
Ti–30Ta alloy
title_short Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
title_full Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
title_fullStr Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
title_full_unstemmed Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
title_sort Influence of annealing temperature on corrosion resistance of tio2 nanotubes grown on ti–30ta alloy
author Capellato, Patricia
author_facet Capellato, Patricia
Sachs, Daniela
Vilela, Filipe Bueno
Melo, Miriam M.
Silva, Gilbert
Rodrigues, Geovani
de C. Zavaglia, Cecilia A.
Nakazato, Roberto Z. [UNESP]
Claro, Ana Paula R. A. [UNESP]
author_role author
author2 Sachs, Daniela
Vilela, Filipe Bueno
Melo, Miriam M.
Silva, Gilbert
Rodrigues, Geovani
de C. Zavaglia, Cecilia A.
Nakazato, Roberto Z. [UNESP]
Claro, Ana Paula R. A. [UNESP]
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Unifei-Federal University of Itajubá
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Capellato, Patricia
Sachs, Daniela
Vilela, Filipe Bueno
Melo, Miriam M.
Silva, Gilbert
Rodrigues, Geovani
de C. Zavaglia, Cecilia A.
Nakazato, Roberto Z. [UNESP]
Claro, Ana Paula R. A. [UNESP]
dc.subject.por.fl_str_mv Annealing temperature
Corrosion resistance
TiO2 nanotube
Ti–30Ta alloy
topic Annealing temperature
Corrosion resistance
TiO2 nanotube
Ti–30Ta alloy
description With little success, researchers has been searching for alloys with elements such as tantalum to improve the long-term life of implants. The Ti–30Ta alloy presents an elastic modulus E = 69 GPa that is close to that of bone (E = 17–25 GPa) than Ti cp (E = 105 GPa). In addition, nanostructure surface modification influences cell behavior and antimicrobial activity. So, this study investigates the corrosion behavior of surface modification by TiO2 nanotube grown on Ti–30Ta alloy after anodization process in the electrolyte glycerol + NH4F 0.25% at 30 V, for nine hours without annealing and annealed in 450◦C, 530◦C and 600◦C (5◦C/min). The electrochemical behavior was evaluated by three electrodes cell. The counter-electrode of graphite, reference-electrode of saturated calomel electrode and working-electrode at electrolyte of 0.15 M NaCl + 0.03 M NaF, with pH = 6 for 8000 s. The scanned region ranged from −0.8 V to values up to 3.5 V with a sweep rate 0.166 mV/s. Potentiodynamic polarization curves were obtained with a potentiostat. The sample was characterized by scanning electron microscopy (SEM) imaging, X-ray diffraction analysis (XRD) and wettability with a contact angle goniometer. We concludes from the obtained results that all treatment surfaces are hydrophilic (<90◦). The surface covered with TiO2 nanotube crystallinity showed anatase phase after annealing at 450◦C, 530◦C and 600◦C; the exceptions were the anodized-without-annealing treatment and without-surface-modification alloys. The electrochemical behavior of the five groups investigated showed similar high resistance to corrosion solution under all conditions.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:37:03Z
2020-12-12T01:37:03Z
2020-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/met10081106
Metals, v. 10, n. 8, p. 1-10, 2020.
2075-4701
http://hdl.handle.net/11449/199337
10.3390/met10081106
2-s2.0-85090258540
8799191078451467
0000-0001-7897-1905
url http://dx.doi.org/10.3390/met10081106
http://hdl.handle.net/11449/199337
identifier_str_mv Metals, v. 10, n. 8, p. 1-10, 2020.
2075-4701
10.3390/met10081106
2-s2.0-85090258540
8799191078451467
0000-0001-7897-1905
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Metals
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-10
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129173190868992