Duality for systems of conservation laws
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s11005-019-01253-0 http://hdl.handle.net/11449/198327 |
Resumo: | For one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space. |
id |
UNSP_c5930d3a4e236b6066dc66d71bfa73d7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/198327 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Duality for systems of conservation lawsCongruences of linesConservation lawsRuled hypersurfaceFor one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Mathematics São Paulo State University-UNESPDepartment of Mathematics São Paulo State University-UNESPFAPESP: 2018200096Universidade Estadual Paulista (Unesp)Agafonov, Sergey I. [UNESP]2020-12-12T01:09:46Z2020-12-12T01:09:46Z2020-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1123-1139http://dx.doi.org/10.1007/s11005-019-01253-0Letters in Mathematical Physics, v. 110, n. 6, p. 1123-1139, 2020.1573-05300377-9017http://hdl.handle.net/11449/19832710.1007/s11005-019-01253-02-s2.0-85077163844Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLetters in Mathematical Physicsinfo:eu-repo/semantics/openAccess2021-10-23T09:55:31Zoai:repositorio.unesp.br:11449/198327Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:20:51.446246Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Duality for systems of conservation laws |
title |
Duality for systems of conservation laws |
spellingShingle |
Duality for systems of conservation laws Agafonov, Sergey I. [UNESP] Congruences of lines Conservation laws Ruled hypersurface |
title_short |
Duality for systems of conservation laws |
title_full |
Duality for systems of conservation laws |
title_fullStr |
Duality for systems of conservation laws |
title_full_unstemmed |
Duality for systems of conservation laws |
title_sort |
Duality for systems of conservation laws |
author |
Agafonov, Sergey I. [UNESP] |
author_facet |
Agafonov, Sergey I. [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Agafonov, Sergey I. [UNESP] |
dc.subject.por.fl_str_mv |
Congruences of lines Conservation laws Ruled hypersurface |
topic |
Congruences of lines Conservation laws Ruled hypersurface |
description |
For one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:09:46Z 2020-12-12T01:09:46Z 2020-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11005-019-01253-0 Letters in Mathematical Physics, v. 110, n. 6, p. 1123-1139, 2020. 1573-0530 0377-9017 http://hdl.handle.net/11449/198327 10.1007/s11005-019-01253-0 2-s2.0-85077163844 |
url |
http://dx.doi.org/10.1007/s11005-019-01253-0 http://hdl.handle.net/11449/198327 |
identifier_str_mv |
Letters in Mathematical Physics, v. 110, n. 6, p. 1123-1139, 2020. 1573-0530 0377-9017 10.1007/s11005-019-01253-0 2-s2.0-85077163844 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Letters in Mathematical Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1123-1139 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129417834135552 |