Duality for systems of conservation laws

Detalhes bibliográficos
Autor(a) principal: Agafonov, Sergey I. [UNESP]
Data de Publicação: 2020
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s11005-019-01253-0
http://hdl.handle.net/11449/198327
Resumo: For one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space.
id UNSP_c5930d3a4e236b6066dc66d71bfa73d7
oai_identifier_str oai:repositorio.unesp.br:11449/198327
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Duality for systems of conservation lawsCongruences of linesConservation lawsRuled hypersurfaceFor one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Mathematics São Paulo State University-UNESPDepartment of Mathematics São Paulo State University-UNESPFAPESP: 2018200096Universidade Estadual Paulista (Unesp)Agafonov, Sergey I. [UNESP]2020-12-12T01:09:46Z2020-12-12T01:09:46Z2020-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1123-1139http://dx.doi.org/10.1007/s11005-019-01253-0Letters in Mathematical Physics, v. 110, n. 6, p. 1123-1139, 2020.1573-05300377-9017http://hdl.handle.net/11449/19832710.1007/s11005-019-01253-02-s2.0-85077163844Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLetters in Mathematical Physicsinfo:eu-repo/semantics/openAccess2021-10-23T09:55:31Zoai:repositorio.unesp.br:11449/198327Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:20:51.446246Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Duality for systems of conservation laws
title Duality for systems of conservation laws
spellingShingle Duality for systems of conservation laws
Agafonov, Sergey I. [UNESP]
Congruences of lines
Conservation laws
Ruled hypersurface
title_short Duality for systems of conservation laws
title_full Duality for systems of conservation laws
title_fullStr Duality for systems of conservation laws
title_full_unstemmed Duality for systems of conservation laws
title_sort Duality for systems of conservation laws
author Agafonov, Sergey I. [UNESP]
author_facet Agafonov, Sergey I. [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Agafonov, Sergey I. [UNESP]
dc.subject.por.fl_str_mv Congruences of lines
Conservation laws
Ruled hypersurface
topic Congruences of lines
Conservation laws
Ruled hypersurface
description For one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:09:46Z
2020-12-12T01:09:46Z
2020-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11005-019-01253-0
Letters in Mathematical Physics, v. 110, n. 6, p. 1123-1139, 2020.
1573-0530
0377-9017
http://hdl.handle.net/11449/198327
10.1007/s11005-019-01253-0
2-s2.0-85077163844
url http://dx.doi.org/10.1007/s11005-019-01253-0
http://hdl.handle.net/11449/198327
identifier_str_mv Letters in Mathematical Physics, v. 110, n. 6, p. 1123-1139, 2020.
1573-0530
0377-9017
10.1007/s11005-019-01253-0
2-s2.0-85077163844
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Letters in Mathematical Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1123-1139
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129417834135552