Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.1590/S0104-66321999000200010 |
Texto Completo: | http://dx.doi.org/10.1590/S0104-66321999000200010 http://hdl.handle.net/11449/25246 |
Resumo: | This paper reports on the use of the gas balance and dynamic methods to obtain an estimate of the volumetric oxygen transfer coefficient (kLa) in a conventional reactor during the growth phase of the microorganism Cephalosporium acremonium. A new way of calculating kLa by the dynamic method employing an electrode with a slow response, is proposed. The calculated values of kLa were used in the training of a feedforward neural network, for which the inputs were the parameter measurements of the related variables. The neural network technique proved effective, predicting values of kLa accurately from input data not used during the training phase. In contrast, the gas balance method was shown to be less useful. This could be attributed to the poor data obtained with the apparatus used to measure the oxygen in the exhaust gas, explained by the low rate of oxygen consumption by the microorganism. |
id |
UNSP_c64cd654086c304c49f37d3bb64f0a70 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/25246 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network techniqueneural network techniquedynamic methodsvolumetric oxygen transfer coefficientThis paper reports on the use of the gas balance and dynamic methods to obtain an estimate of the volumetric oxygen transfer coefficient (kLa) in a conventional reactor during the growth phase of the microorganism Cephalosporium acremonium. A new way of calculating kLa by the dynamic method employing an electrode with a slow response, is proposed. The calculated values of kLa were used in the training of a feedforward neural network, for which the inputs were the parameter measurements of the related variables. The neural network technique proved effective, predicting values of kLa accurately from input data not used during the training phase. In contrast, the gas balance method was shown to be less useful. This could be attributed to the poor data obtained with the apparatus used to measure the oxygen in the exhaust gas, explained by the low rate of oxygen consumption by the microorganism.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Carlos (UFSCar)UNESPUNESPBrazilian Society of Chemical EngineeringUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Cruz, A. J. G.Silva, A. S.Araujo, M. L. G. C. [UNESP]Giordano, R. C.Hokka, C. O.2014-05-20T14:17:31Z2014-05-20T14:17:31Z1999-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article179-183http://dx.doi.org/10.1590/S0104-66321999000200010Brazilian Journal of Chemical Engineering. Brazilian Society of Chemical Engineering, v. 16, n. 2, p. 179-183, 1999.0104-6632http://hdl.handle.net/11449/2524610.1590/S0104-66321999000200010S0104-663219990002000102-s2.0-0033365912SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Chemical Engineering0.9250,395info:eu-repo/semantics/openAccess2021-10-23T10:58:49Zoai:repositorio.unesp.br:11449/25246Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:08:57.447565Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique |
title |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique |
spellingShingle |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique Cruz, A. J. G. neural network technique dynamic methods volumetric oxygen transfer coefficient Cruz, A. J. G. neural network technique dynamic methods volumetric oxygen transfer coefficient |
title_short |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique |
title_full |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique |
title_fullStr |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique |
title_full_unstemmed |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique |
title_sort |
Estimation of the volumetric oxygen tranfer coefficient (KLa) from the gas balance and using a neural network technique |
author |
Cruz, A. J. G. |
author_facet |
Cruz, A. J. G. Cruz, A. J. G. Silva, A. S. Araujo, M. L. G. C. [UNESP] Giordano, R. C. Hokka, C. O. Silva, A. S. Araujo, M. L. G. C. [UNESP] Giordano, R. C. Hokka, C. O. |
author_role |
author |
author2 |
Silva, A. S. Araujo, M. L. G. C. [UNESP] Giordano, R. C. Hokka, C. O. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Cruz, A. J. G. Silva, A. S. Araujo, M. L. G. C. [UNESP] Giordano, R. C. Hokka, C. O. |
dc.subject.por.fl_str_mv |
neural network technique dynamic methods volumetric oxygen transfer coefficient |
topic |
neural network technique dynamic methods volumetric oxygen transfer coefficient |
description |
This paper reports on the use of the gas balance and dynamic methods to obtain an estimate of the volumetric oxygen transfer coefficient (kLa) in a conventional reactor during the growth phase of the microorganism Cephalosporium acremonium. A new way of calculating kLa by the dynamic method employing an electrode with a slow response, is proposed. The calculated values of kLa were used in the training of a feedforward neural network, for which the inputs were the parameter measurements of the related variables. The neural network technique proved effective, predicting values of kLa accurately from input data not used during the training phase. In contrast, the gas balance method was shown to be less useful. This could be attributed to the poor data obtained with the apparatus used to measure the oxygen in the exhaust gas, explained by the low rate of oxygen consumption by the microorganism. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-06-01 2014-05-20T14:17:31Z 2014-05-20T14:17:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0104-66321999000200010 Brazilian Journal of Chemical Engineering. Brazilian Society of Chemical Engineering, v. 16, n. 2, p. 179-183, 1999. 0104-6632 http://hdl.handle.net/11449/25246 10.1590/S0104-66321999000200010 S0104-66321999000200010 2-s2.0-0033365912 |
url |
http://dx.doi.org/10.1590/S0104-66321999000200010 http://hdl.handle.net/11449/25246 |
identifier_str_mv |
Brazilian Journal of Chemical Engineering. Brazilian Society of Chemical Engineering, v. 16, n. 2, p. 179-183, 1999. 0104-6632 10.1590/S0104-66321999000200010 S0104-66321999000200010 2-s2.0-0033365912 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Chemical Engineering 0.925 0,395 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
179-183 |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822182545439064064 |
dc.identifier.doi.none.fl_str_mv |
10.1590/S0104-66321999000200010 |