Genetic algorithm of chu and beasley for static and multistage transmission expansion planning

Detalhes bibliográficos
Autor(a) principal: De Silva, Irênio J.
Data de Publicação: 2006
Outros Autores: Rider, Marcos J., Romero, Rubén [UNESP], Murari, Carlos A.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PES.2006.1709172
http://hdl.handle.net/11449/69250
Resumo: In this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE.
id UNSP_c679da2f44e8dd1180316b39d8c8876c
oai_identifier_str oai:repositorio.unesp.br:11449/69250
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Genetic algorithm of chu and beasley for static and multistage transmission expansion planningCombinatorial optimizationGenetic algorithm of Chu and BeasleyMeta-heuristicsTransmission expansion planningGenetic algorithmsProblem solvingSimulated annealingStrategic planningElectric power transmissionIn this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE.IEEEDepartment of Electric Energy Systems State University of Campinas, Campinas - SPFaculty of Engineering of Ilha Solteira Paulista State University, Ilha Solteira - SPFaculty of Engineering of Ilha Solteira Paulista State University, Ilha Solteira - SPIEEEUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)De Silva, Irênio J.Rider, Marcos J.Romero, Rubén [UNESP]Murari, Carlos A.2014-05-27T11:22:03Z2014-05-27T11:22:03Z2006-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PES.2006.17091722006 IEEE Power Engineering Society General Meeting, PES.http://hdl.handle.net/11449/6925010.1109/PES.2006.17091722-s2.0-35348899544Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2006 IEEE Power Engineering Society General Meeting, PESinfo:eu-repo/semantics/openAccess2024-07-04T19:12:00Zoai:repositorio.unesp.br:11449/69250Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:54:39.253653Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
title Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
spellingShingle Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
De Silva, Irênio J.
Combinatorial optimization
Genetic algorithm of Chu and Beasley
Meta-heuristics
Transmission expansion planning
Genetic algorithms
Problem solving
Simulated annealing
Strategic planning
Electric power transmission
title_short Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
title_full Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
title_fullStr Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
title_full_unstemmed Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
title_sort Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
author De Silva, Irênio J.
author_facet De Silva, Irênio J.
Rider, Marcos J.
Romero, Rubén [UNESP]
Murari, Carlos A.
author_role author
author2 Rider, Marcos J.
Romero, Rubén [UNESP]
Murari, Carlos A.
author2_role author
author
author
dc.contributor.none.fl_str_mv IEEE
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv De Silva, Irênio J.
Rider, Marcos J.
Romero, Rubén [UNESP]
Murari, Carlos A.
dc.subject.por.fl_str_mv Combinatorial optimization
Genetic algorithm of Chu and Beasley
Meta-heuristics
Transmission expansion planning
Genetic algorithms
Problem solving
Simulated annealing
Strategic planning
Electric power transmission
topic Combinatorial optimization
Genetic algorithm of Chu and Beasley
Meta-heuristics
Transmission expansion planning
Genetic algorithms
Problem solving
Simulated annealing
Strategic planning
Electric power transmission
description In this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE.
publishDate 2006
dc.date.none.fl_str_mv 2006-12-01
2014-05-27T11:22:03Z
2014-05-27T11:22:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PES.2006.1709172
2006 IEEE Power Engineering Society General Meeting, PES.
http://hdl.handle.net/11449/69250
10.1109/PES.2006.1709172
2-s2.0-35348899544
url http://dx.doi.org/10.1109/PES.2006.1709172
http://hdl.handle.net/11449/69250
identifier_str_mv 2006 IEEE Power Engineering Society General Meeting, PES.
10.1109/PES.2006.1709172
2-s2.0-35348899544
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2006 IEEE Power Engineering Society General Meeting, PES
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129563645968384