Genetic algorithm of chu and beasley for static and multistage transmission expansion planning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PES.2006.1709172 http://hdl.handle.net/11449/69250 |
Resumo: | In this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE. |
id |
UNSP_c679da2f44e8dd1180316b39d8c8876c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/69250 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planningCombinatorial optimizationGenetic algorithm of Chu and BeasleyMeta-heuristicsTransmission expansion planningGenetic algorithmsProblem solvingSimulated annealingStrategic planningElectric power transmissionIn this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE.IEEEDepartment of Electric Energy Systems State University of Campinas, Campinas - SPFaculty of Engineering of Ilha Solteira Paulista State University, Ilha Solteira - SPFaculty of Engineering of Ilha Solteira Paulista State University, Ilha Solteira - SPIEEEUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)De Silva, Irênio J.Rider, Marcos J.Romero, Rubén [UNESP]Murari, Carlos A.2014-05-27T11:22:03Z2014-05-27T11:22:03Z2006-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/PES.2006.17091722006 IEEE Power Engineering Society General Meeting, PES.http://hdl.handle.net/11449/6925010.1109/PES.2006.17091722-s2.0-35348899544Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2006 IEEE Power Engineering Society General Meeting, PESinfo:eu-repo/semantics/openAccess2024-07-04T19:12:00Zoai:repositorio.unesp.br:11449/69250Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:54:39.253653Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning |
title |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning |
spellingShingle |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning De Silva, Irênio J. Combinatorial optimization Genetic algorithm of Chu and Beasley Meta-heuristics Transmission expansion planning Genetic algorithms Problem solving Simulated annealing Strategic planning Electric power transmission |
title_short |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning |
title_full |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning |
title_fullStr |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning |
title_full_unstemmed |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning |
title_sort |
Genetic algorithm of chu and beasley for static and multistage transmission expansion planning |
author |
De Silva, Irênio J. |
author_facet |
De Silva, Irênio J. Rider, Marcos J. Romero, Rubén [UNESP] Murari, Carlos A. |
author_role |
author |
author2 |
Rider, Marcos J. Romero, Rubén [UNESP] Murari, Carlos A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
IEEE Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
De Silva, Irênio J. Rider, Marcos J. Romero, Rubén [UNESP] Murari, Carlos A. |
dc.subject.por.fl_str_mv |
Combinatorial optimization Genetic algorithm of Chu and Beasley Meta-heuristics Transmission expansion planning Genetic algorithms Problem solving Simulated annealing Strategic planning Electric power transmission |
topic |
Combinatorial optimization Genetic algorithm of Chu and Beasley Meta-heuristics Transmission expansion planning Genetic algorithms Problem solving Simulated annealing Strategic planning Electric power transmission |
description |
In this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12-01 2014-05-27T11:22:03Z 2014-05-27T11:22:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PES.2006.1709172 2006 IEEE Power Engineering Society General Meeting, PES. http://hdl.handle.net/11449/69250 10.1109/PES.2006.1709172 2-s2.0-35348899544 |
url |
http://dx.doi.org/10.1109/PES.2006.1709172 http://hdl.handle.net/11449/69250 |
identifier_str_mv |
2006 IEEE Power Engineering Society General Meeting, PES. 10.1109/PES.2006.1709172 2-s2.0-35348899544 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2006 IEEE Power Engineering Society General Meeting, PES |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129563645968384 |