Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Eliane R.
Data de Publicação: 2019
Outros Autores: Nicholls, Geoff, Tarumoto, Mario H. [UNESP], Tzintzun, Guadalupe
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10651-019-00423-6
http://hdl.handle.net/11449/185824
Resumo: A non-homogeneous Poisson process is used to study the rate at which a pollutant's concentration exceeds a given threshold of interest. An anisotropic spatial model is imposed on the parameters of the Poisson intensity function. The main contribution here is to allow the presence of change-points in time since the data may behave differently for different time frames in a given observational period. Additionally, spatial anisotropy is also imposed on the vector of change-points in order to account for the possible correlation between different sites. Estimation of the parameters of the model is performed using Bayesian inference via Markov chain Monte Carlo algorithms, in particular, Gibbs sampling and Metropolis-Hastings. The different versions of the model are applied to ozone data from the monitoring network of Mexico City, Mexico. An analysis of the results obtained is also given.
id UNSP_cc86b885b38b95a39b03f05bd69cfc70
oai_identifier_str oai:repositorio.unesp.br:11449/185824
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution dataAnisotropic spatial modelBayesian inferenceChange-pointsMarkov chain Monte Carlo algorithmsNon-homogeneous Poisson processA non-homogeneous Poisson process is used to study the rate at which a pollutant's concentration exceeds a given threshold of interest. An anisotropic spatial model is imposed on the parameters of the Poisson intensity function. The main contribution here is to allow the presence of change-points in time since the data may behave differently for different time frames in a given observational period. Additionally, spatial anisotropy is also imposed on the vector of change-points in order to account for the possible correlation between different sites. Estimation of the parameters of the model is performed using Bayesian inference via Markov chain Monte Carlo algorithms, in particular, Gibbs sampling and Metropolis-Hastings. The different versions of the model are applied to ozone data from the monitoring network of Mexico City, Mexico. An analysis of the results obtained is also given.Direccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico (DGAPA-UNAM)DGAPA-UNAMDepartments of Statistics of the University of Oxford, UKUniversidade Estadual Paulista Julio de Mesquita Filho - Campus Presidente Prudente, BrazilInstituto de Matematicas of theUniversidad Nacional Autonoma de Mexico, MexicoUniv Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient, Mexico City 04510, DF, MexicoUniv Oxford, Dept Stat, Oxford, EnglandUniv Estadual Paulista, Dept Estat, Fac Ciencias & Tecnol, Presidente Prudente, SP, BrazilSecretaria Medio Ambiente & Recursos Nat, Inst Nacl Ecol & Cambio Climat, Mexico City, DF, MexicoUniv Estadual Paulista, Dept Estat, Fac Ciencias & Tecnol, Presidente Prudente, SP, BrazilDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico (DGAPA-UNAM): PAPIIT-IN102713Direccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico (DGAPA-UNAM): IN102416SpringerUniv Nacl Autonoma MexicoUniv OxfordUniversidade Estadual Paulista (Unesp)Secretaria Medio Ambiente & Recursos NatRodrigues, Eliane R.Nicholls, GeoffTarumoto, Mario H. [UNESP]Tzintzun, Guadalupe2019-10-04T12:38:48Z2019-10-04T12:38:48Z2019-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article153-184http://dx.doi.org/10.1007/s10651-019-00423-6Environmental And Ecological Statistics. Dordrecht: Springer, v. 26, n. 2, p. 153-184, 2019.1352-8505http://hdl.handle.net/11449/18582410.1007/s10651-019-00423-6WOS:000472171700003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEnvironmental And Ecological Statisticsinfo:eu-repo/semantics/openAccess2024-06-18T18:17:55Zoai:repositorio.unesp.br:11449/185824Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:13:30.798200Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
title Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
spellingShingle Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
Rodrigues, Eliane R.
Anisotropic spatial model
Bayesian inference
Change-points
Markov chain Monte Carlo algorithms
Non-homogeneous Poisson process
title_short Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
title_full Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
title_fullStr Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
title_full_unstemmed Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
title_sort Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
author Rodrigues, Eliane R.
author_facet Rodrigues, Eliane R.
Nicholls, Geoff
Tarumoto, Mario H. [UNESP]
Tzintzun, Guadalupe
author_role author
author2 Nicholls, Geoff
Tarumoto, Mario H. [UNESP]
Tzintzun, Guadalupe
author2_role author
author
author
dc.contributor.none.fl_str_mv Univ Nacl Autonoma Mexico
Univ Oxford
Universidade Estadual Paulista (Unesp)
Secretaria Medio Ambiente & Recursos Nat
dc.contributor.author.fl_str_mv Rodrigues, Eliane R.
Nicholls, Geoff
Tarumoto, Mario H. [UNESP]
Tzintzun, Guadalupe
dc.subject.por.fl_str_mv Anisotropic spatial model
Bayesian inference
Change-points
Markov chain Monte Carlo algorithms
Non-homogeneous Poisson process
topic Anisotropic spatial model
Bayesian inference
Change-points
Markov chain Monte Carlo algorithms
Non-homogeneous Poisson process
description A non-homogeneous Poisson process is used to study the rate at which a pollutant's concentration exceeds a given threshold of interest. An anisotropic spatial model is imposed on the parameters of the Poisson intensity function. The main contribution here is to allow the presence of change-points in time since the data may behave differently for different time frames in a given observational period. Additionally, spatial anisotropy is also imposed on the vector of change-points in order to account for the possible correlation between different sites. Estimation of the parameters of the model is performed using Bayesian inference via Markov chain Monte Carlo algorithms, in particular, Gibbs sampling and Metropolis-Hastings. The different versions of the model are applied to ozone data from the monitoring network of Mexico City, Mexico. An analysis of the results obtained is also given.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T12:38:48Z
2019-10-04T12:38:48Z
2019-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10651-019-00423-6
Environmental And Ecological Statistics. Dordrecht: Springer, v. 26, n. 2, p. 153-184, 2019.
1352-8505
http://hdl.handle.net/11449/185824
10.1007/s10651-019-00423-6
WOS:000472171700003
url http://dx.doi.org/10.1007/s10651-019-00423-6
http://hdl.handle.net/11449/185824
identifier_str_mv Environmental And Ecological Statistics. Dordrecht: Springer, v. 26, n. 2, p. 153-184, 2019.
1352-8505
10.1007/s10651-019-00423-6
WOS:000472171700003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Environmental And Ecological Statistics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 153-184
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128619819565056