Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s10651-019-00423-6 http://hdl.handle.net/11449/185824 |
Resumo: | A non-homogeneous Poisson process is used to study the rate at which a pollutant's concentration exceeds a given threshold of interest. An anisotropic spatial model is imposed on the parameters of the Poisson intensity function. The main contribution here is to allow the presence of change-points in time since the data may behave differently for different time frames in a given observational period. Additionally, spatial anisotropy is also imposed on the vector of change-points in order to account for the possible correlation between different sites. Estimation of the parameters of the model is performed using Bayesian inference via Markov chain Monte Carlo algorithms, in particular, Gibbs sampling and Metropolis-Hastings. The different versions of the model are applied to ozone data from the monitoring network of Mexico City, Mexico. An analysis of the results obtained is also given. |
id |
UNSP_cc86b885b38b95a39b03f05bd69cfc70 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/185824 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution dataAnisotropic spatial modelBayesian inferenceChange-pointsMarkov chain Monte Carlo algorithmsNon-homogeneous Poisson processA non-homogeneous Poisson process is used to study the rate at which a pollutant's concentration exceeds a given threshold of interest. An anisotropic spatial model is imposed on the parameters of the Poisson intensity function. The main contribution here is to allow the presence of change-points in time since the data may behave differently for different time frames in a given observational period. Additionally, spatial anisotropy is also imposed on the vector of change-points in order to account for the possible correlation between different sites. Estimation of the parameters of the model is performed using Bayesian inference via Markov chain Monte Carlo algorithms, in particular, Gibbs sampling and Metropolis-Hastings. The different versions of the model are applied to ozone data from the monitoring network of Mexico City, Mexico. An analysis of the results obtained is also given.Direccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico (DGAPA-UNAM)DGAPA-UNAMDepartments of Statistics of the University of Oxford, UKUniversidade Estadual Paulista Julio de Mesquita Filho - Campus Presidente Prudente, BrazilInstituto de Matematicas of theUniversidad Nacional Autonoma de Mexico, MexicoUniv Nacl Autonoma Mexico, Inst Matemat, Area Invest Cient, Mexico City 04510, DF, MexicoUniv Oxford, Dept Stat, Oxford, EnglandUniv Estadual Paulista, Dept Estat, Fac Ciencias & Tecnol, Presidente Prudente, SP, BrazilSecretaria Medio Ambiente & Recursos Nat, Inst Nacl Ecol & Cambio Climat, Mexico City, DF, MexicoUniv Estadual Paulista, Dept Estat, Fac Ciencias & Tecnol, Presidente Prudente, SP, BrazilDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico (DGAPA-UNAM): PAPIIT-IN102713Direccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico (DGAPA-UNAM): IN102416SpringerUniv Nacl Autonoma MexicoUniv OxfordUniversidade Estadual Paulista (Unesp)Secretaria Medio Ambiente & Recursos NatRodrigues, Eliane R.Nicholls, GeoffTarumoto, Mario H. [UNESP]Tzintzun, Guadalupe2019-10-04T12:38:48Z2019-10-04T12:38:48Z2019-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article153-184http://dx.doi.org/10.1007/s10651-019-00423-6Environmental And Ecological Statistics. Dordrecht: Springer, v. 26, n. 2, p. 153-184, 2019.1352-8505http://hdl.handle.net/11449/18582410.1007/s10651-019-00423-6WOS:000472171700003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEnvironmental And Ecological Statisticsinfo:eu-repo/semantics/openAccess2024-06-18T18:17:55Zoai:repositorio.unesp.br:11449/185824Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:13:30.798200Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data |
title |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data |
spellingShingle |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data Rodrigues, Eliane R. Anisotropic spatial model Bayesian inference Change-points Markov chain Monte Carlo algorithms Non-homogeneous Poisson process |
title_short |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data |
title_full |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data |
title_fullStr |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data |
title_full_unstemmed |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data |
title_sort |
Using a non-homogeneous Poisson model with spatial anisotropy and change-points to study air pollution data |
author |
Rodrigues, Eliane R. |
author_facet |
Rodrigues, Eliane R. Nicholls, Geoff Tarumoto, Mario H. [UNESP] Tzintzun, Guadalupe |
author_role |
author |
author2 |
Nicholls, Geoff Tarumoto, Mario H. [UNESP] Tzintzun, Guadalupe |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Univ Nacl Autonoma Mexico Univ Oxford Universidade Estadual Paulista (Unesp) Secretaria Medio Ambiente & Recursos Nat |
dc.contributor.author.fl_str_mv |
Rodrigues, Eliane R. Nicholls, Geoff Tarumoto, Mario H. [UNESP] Tzintzun, Guadalupe |
dc.subject.por.fl_str_mv |
Anisotropic spatial model Bayesian inference Change-points Markov chain Monte Carlo algorithms Non-homogeneous Poisson process |
topic |
Anisotropic spatial model Bayesian inference Change-points Markov chain Monte Carlo algorithms Non-homogeneous Poisson process |
description |
A non-homogeneous Poisson process is used to study the rate at which a pollutant's concentration exceeds a given threshold of interest. An anisotropic spatial model is imposed on the parameters of the Poisson intensity function. The main contribution here is to allow the presence of change-points in time since the data may behave differently for different time frames in a given observational period. Additionally, spatial anisotropy is also imposed on the vector of change-points in order to account for the possible correlation between different sites. Estimation of the parameters of the model is performed using Bayesian inference via Markov chain Monte Carlo algorithms, in particular, Gibbs sampling and Metropolis-Hastings. The different versions of the model are applied to ozone data from the monitoring network of Mexico City, Mexico. An analysis of the results obtained is also given. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-04T12:38:48Z 2019-10-04T12:38:48Z 2019-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s10651-019-00423-6 Environmental And Ecological Statistics. Dordrecht: Springer, v. 26, n. 2, p. 153-184, 2019. 1352-8505 http://hdl.handle.net/11449/185824 10.1007/s10651-019-00423-6 WOS:000472171700003 |
url |
http://dx.doi.org/10.1007/s10651-019-00423-6 http://hdl.handle.net/11449/185824 |
identifier_str_mv |
Environmental And Ecological Statistics. Dordrecht: Springer, v. 26, n. 2, p. 153-184, 2019. 1352-8505 10.1007/s10651-019-00423-6 WOS:000472171700003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Environmental And Ecological Statistics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
153-184 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128619819565056 |