Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/157058 |
Resumo: | O aprendizado de máquina vem sendo utilizado em diferentes segmentos da área financeira, como na previsão de preços de ações, mercado de câmbio, índices de mercado e composição de carteira de investimento. Este trabalho busca comparar e combinar três tipos de algoritmos de aprendizagem de máquina, mais especificamente, o método Ensemble de Redes Neurais Artificias com as redes Multilayer Perceptrons (MLP), auto-regressiva com entradas exógenas (NARX) e Long Short-Term Memory (LSTM) para predição do Índice Bovespa. A amostra da série do Ibovespa foi obtida pelo Yahoo!Finance no período de 04 de janeiro de 2010 a 28 de dezembro de 2017, de periodicidade diária. Foram utilizadas as séries temporais referentes a cotação do Dólar, além de indicadores numéricos da Análise Técnica como variáveis independentes para compor a predição. Os algoritmos foram desenvolvidos através da linguagem Python usando framework Keras. Para avaliação dos algoritmos foram utilizadas as métricas de desempenho MSE, RMSE e MAPE, além da comparação entre as previsões obtidas e os valores reais. Os resultados das métricas indicam bom desempenho de predição pelo modelo Ensemble proposto, obtendo 70% de acerto no movimento do índice, porém, não conseguiu atingir melhores resultados que as redes MLP e NARX, ambas com 80% de acerto. |
id |
UNSP_cc8f977adef94c1e514ad9ce449119ba |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/157058 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeirasStudy of the application of artificial neural networks for the prediction of financial time seriesRedes neurais artificiaisPrevisão séries temporais financeirasEnsemble de redes neuraisLong short-term memory (LSTM)Artificial neural networksFinancial time series forecastEnsemble of neural networksO aprendizado de máquina vem sendo utilizado em diferentes segmentos da área financeira, como na previsão de preços de ações, mercado de câmbio, índices de mercado e composição de carteira de investimento. Este trabalho busca comparar e combinar três tipos de algoritmos de aprendizagem de máquina, mais especificamente, o método Ensemble de Redes Neurais Artificias com as redes Multilayer Perceptrons (MLP), auto-regressiva com entradas exógenas (NARX) e Long Short-Term Memory (LSTM) para predição do Índice Bovespa. A amostra da série do Ibovespa foi obtida pelo Yahoo!Finance no período de 04 de janeiro de 2010 a 28 de dezembro de 2017, de periodicidade diária. Foram utilizadas as séries temporais referentes a cotação do Dólar, além de indicadores numéricos da Análise Técnica como variáveis independentes para compor a predição. Os algoritmos foram desenvolvidos através da linguagem Python usando framework Keras. Para avaliação dos algoritmos foram utilizadas as métricas de desempenho MSE, RMSE e MAPE, além da comparação entre as previsões obtidas e os valores reais. Os resultados das métricas indicam bom desempenho de predição pelo modelo Ensemble proposto, obtendo 70% de acerto no movimento do índice, porém, não conseguiu atingir melhores resultados que as redes MLP e NARX, ambas com 80% de acerto.Different segments of the financial area, such as the forecast of stock prices, the foreign exchange market, the market indices and the composition of investment portfolio, use machine learning. This work aims to compare and combine two types of machine learning algorithms, the Artificial Neural Network Ensemble method with Multilayer Perceptrons (MLP), auto-regressive with exogenous inputs (NARX) and Long Short-Term Memory (LSTM) for prediction of the Bovespa Index. The Bovespa time series samples were obtained daily, using Yahoo! Finance, from January 4th, 2010 to December 28th, 2017. Dollar quotation, Google trends and numerical indicators of the Technical Analysis were used as independent variables to compose the prediction. The algorithms were developed using Python and Keras framework. Finally, in order to evaluate the algorithms, the MSE, RMSE and MAPE performance metrics, as well as the comparison between the obtained predictions and the actual values, were used. The results of the metrics indicate good prediction performance by the proposed Ensemble model, obtaining a 70% accuracy in the index movement, but failed to achieve better results than the MLP and NARX networks, both with 80% accuracy.Universidade Estadual Paulista (Unesp)Crepaldi, Antonio Fernando [UNESP]Universidade Estadual Paulista (Unesp)Dametto, Ronaldo César2018-09-20T12:19:07Z2018-09-20T12:19:07Z2018-08-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/15705800090803633004056086P6porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-28T19:05:40Zoai:repositorio.unesp.br:11449/157058Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:05:51.164891Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras Study of the application of artificial neural networks for the prediction of financial time series |
title |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras |
spellingShingle |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras Dametto, Ronaldo César Redes neurais artificiais Previsão séries temporais financeiras Ensemble de redes neurais Long short-term memory (LSTM) Artificial neural networks Financial time series forecast Ensemble of neural networks |
title_short |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras |
title_full |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras |
title_fullStr |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras |
title_full_unstemmed |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras |
title_sort |
Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras |
author |
Dametto, Ronaldo César |
author_facet |
Dametto, Ronaldo César |
author_role |
author |
dc.contributor.none.fl_str_mv |
Crepaldi, Antonio Fernando [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Dametto, Ronaldo César |
dc.subject.por.fl_str_mv |
Redes neurais artificiais Previsão séries temporais financeiras Ensemble de redes neurais Long short-term memory (LSTM) Artificial neural networks Financial time series forecast Ensemble of neural networks |
topic |
Redes neurais artificiais Previsão séries temporais financeiras Ensemble de redes neurais Long short-term memory (LSTM) Artificial neural networks Financial time series forecast Ensemble of neural networks |
description |
O aprendizado de máquina vem sendo utilizado em diferentes segmentos da área financeira, como na previsão de preços de ações, mercado de câmbio, índices de mercado e composição de carteira de investimento. Este trabalho busca comparar e combinar três tipos de algoritmos de aprendizagem de máquina, mais especificamente, o método Ensemble de Redes Neurais Artificias com as redes Multilayer Perceptrons (MLP), auto-regressiva com entradas exógenas (NARX) e Long Short-Term Memory (LSTM) para predição do Índice Bovespa. A amostra da série do Ibovespa foi obtida pelo Yahoo!Finance no período de 04 de janeiro de 2010 a 28 de dezembro de 2017, de periodicidade diária. Foram utilizadas as séries temporais referentes a cotação do Dólar, além de indicadores numéricos da Análise Técnica como variáveis independentes para compor a predição. Os algoritmos foram desenvolvidos através da linguagem Python usando framework Keras. Para avaliação dos algoritmos foram utilizadas as métricas de desempenho MSE, RMSE e MAPE, além da comparação entre as previsões obtidas e os valores reais. Os resultados das métricas indicam bom desempenho de predição pelo modelo Ensemble proposto, obtendo 70% de acerto no movimento do índice, porém, não conseguiu atingir melhores resultados que as redes MLP e NARX, ambas com 80% de acerto. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-20T12:19:07Z 2018-09-20T12:19:07Z 2018-08-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/157058 000908036 33004056086P6 |
url |
http://hdl.handle.net/11449/157058 |
identifier_str_mv |
000908036 33004056086P6 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129582052671488 |