Preparation of the 1/2 Laughlin state with atoms in a rotating trap

Detalhes bibliográficos
Autor(a) principal: Andrade, Bárbara [UNESP]
Data de Publicação: 2021
Outros Autores: Kasper, Valentin, Lewenstein, Maciej, Weitenberg, Christof, Graß, Tobias
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevA.103.063325
http://hdl.handle.net/11449/229065
Resumo: Fractional quantum Hall systems are among the most exciting strongly correlated systems. Accessing them microscopically via quantum simulations with ultracold atoms would be an important achievement toward a better understanding of this strongly correlated state of matter. A promising approach is to confine a small number of bosonic atoms in a quasi-two-dimensional rotating trap, which mimics the magnetic field. For rotation frequencies close to the in-plane trapping frequency, the ground state is predicted to be a bosonic analog of the Laughlin state. Here, we study the problem of the adiabatic preparation of the Laughlin state by ramping the rotation frequency and controlling the ellipticity of the trapping potential. By employing adapted ramping speeds for rotation frequency and ellipticity, and large trap deformations, we improve the preparation time for high-fidelity Laughlin states by a factor of 10 in comparison to previous studies. With this improvement of the adiabatic protocol the Laughlin state can be prepared with current experimental technology.
id UNSP_cd413d04ce06e276583c160c79e5786c
oai_identifier_str oai:repositorio.unesp.br:11449/229065
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Preparation of the 1/2 Laughlin state with atoms in a rotating trapFractional quantum Hall systems are among the most exciting strongly correlated systems. Accessing them microscopically via quantum simulations with ultracold atoms would be an important achievement toward a better understanding of this strongly correlated state of matter. A promising approach is to confine a small number of bosonic atoms in a quasi-two-dimensional rotating trap, which mimics the magnetic field. For rotation frequencies close to the in-plane trapping frequency, the ground state is predicted to be a bosonic analog of the Laughlin state. Here, we study the problem of the adiabatic preparation of the Laughlin state by ramping the rotation frequency and controlling the ellipticity of the trapping potential. By employing adapted ramping speeds for rotation frequency and ellipticity, and large trap deformations, we improve the preparation time for high-fidelity Laughlin states by a factor of 10 in comparison to previous studies. With this improvement of the adiabatic protocol the Laughlin state can be prepared with current experimental technology.Instituto de Física Teórica UNESP-Universidade Estadual PaulistaICFO-Institut de Ciencies Fotoniques Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3Department of Physics Harvard UniversityICREA, Pg. Lluis Companys 23ILP-Institut für Laserphysik Universität Hamburg, Luruper Chaussee 149Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149Instituto de Física Teórica UNESP-Universidade Estadual PaulistaUniversidade Estadual Paulista (UNESP)Barcelona Institute of Science and TechnologyHarvard UniversityICREAUniversität HamburgHamburg Centre for Ultrafast ImagingAndrade, Bárbara [UNESP]Kasper, ValentinLewenstein, MaciejWeitenberg, ChristofGraß, Tobias2022-04-29T08:30:11Z2022-04-29T08:30:11Z2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevA.103.063325Physical Review A, v. 103, n. 6, 2021.2469-99342469-9926http://hdl.handle.net/11449/22906510.1103/PhysRevA.103.0633252-s2.0-85108988464Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2022-04-29T08:30:11Zoai:repositorio.unesp.br:11449/229065Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:33:55.939476Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Preparation of the 1/2 Laughlin state with atoms in a rotating trap
title Preparation of the 1/2 Laughlin state with atoms in a rotating trap
spellingShingle Preparation of the 1/2 Laughlin state with atoms in a rotating trap
Andrade, Bárbara [UNESP]
title_short Preparation of the 1/2 Laughlin state with atoms in a rotating trap
title_full Preparation of the 1/2 Laughlin state with atoms in a rotating trap
title_fullStr Preparation of the 1/2 Laughlin state with atoms in a rotating trap
title_full_unstemmed Preparation of the 1/2 Laughlin state with atoms in a rotating trap
title_sort Preparation of the 1/2 Laughlin state with atoms in a rotating trap
author Andrade, Bárbara [UNESP]
author_facet Andrade, Bárbara [UNESP]
Kasper, Valentin
Lewenstein, Maciej
Weitenberg, Christof
Graß, Tobias
author_role author
author2 Kasper, Valentin
Lewenstein, Maciej
Weitenberg, Christof
Graß, Tobias
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Barcelona Institute of Science and Technology
Harvard University
ICREA
Universität Hamburg
Hamburg Centre for Ultrafast Imaging
dc.contributor.author.fl_str_mv Andrade, Bárbara [UNESP]
Kasper, Valentin
Lewenstein, Maciej
Weitenberg, Christof
Graß, Tobias
description Fractional quantum Hall systems are among the most exciting strongly correlated systems. Accessing them microscopically via quantum simulations with ultracold atoms would be an important achievement toward a better understanding of this strongly correlated state of matter. A promising approach is to confine a small number of bosonic atoms in a quasi-two-dimensional rotating trap, which mimics the magnetic field. For rotation frequencies close to the in-plane trapping frequency, the ground state is predicted to be a bosonic analog of the Laughlin state. Here, we study the problem of the adiabatic preparation of the Laughlin state by ramping the rotation frequency and controlling the ellipticity of the trapping potential. By employing adapted ramping speeds for rotation frequency and ellipticity, and large trap deformations, we improve the preparation time for high-fidelity Laughlin states by a factor of 10 in comparison to previous studies. With this improvement of the adiabatic protocol the Laughlin state can be prepared with current experimental technology.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-01
2022-04-29T08:30:11Z
2022-04-29T08:30:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevA.103.063325
Physical Review A, v. 103, n. 6, 2021.
2469-9934
2469-9926
http://hdl.handle.net/11449/229065
10.1103/PhysRevA.103.063325
2-s2.0-85108988464
url http://dx.doi.org/10.1103/PhysRevA.103.063325
http://hdl.handle.net/11449/229065
identifier_str_mv Physical Review A, v. 103, n. 6, 2021.
2469-9934
2469-9926
10.1103/PhysRevA.103.063325
2-s2.0-85108988464
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review A
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128947629588480