A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763 http://hdl.handle.net/11449/8886 |
Resumo: | Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC. |
id |
UNSP_cfbb35bd3cf4fac64f6e46a206675e23 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/8886 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errorsparameter identificationneural networksrobust estimationartificial intelligenceestimation algorithmsSystems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.Univ São Paulo, UNESP,FE,DEE, Sch Engn, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilUniv São Paulo, UNESP,FE,DEE, Sch Engn, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)da Silva, I. N.de Souza, A. N.Bordon, M. E.2014-05-20T13:27:12Z2014-05-20T13:27:12Z2000-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject317-322https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763Control Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000.http://hdl.handle.net/11449/8886WOS:000169941000057821277596049468655898388442982320000-0001-8510-8245Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengControl Applications of Optimization 2000, Vols 1 and 2info:eu-repo/semantics/openAccess2024-06-28T13:34:43Zoai:repositorio.unesp.br:11449/8886Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:42:25.600501Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors |
title |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors |
spellingShingle |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors da Silva, I. N. parameter identification neural networks robust estimation artificial intelligence estimation algorithms |
title_short |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors |
title_full |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors |
title_fullStr |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors |
title_full_unstemmed |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors |
title_sort |
A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors |
author |
da Silva, I. N. |
author_facet |
da Silva, I. N. de Souza, A. N. Bordon, M. E. |
author_role |
author |
author2 |
de Souza, A. N. Bordon, M. E. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
da Silva, I. N. de Souza, A. N. Bordon, M. E. |
dc.subject.por.fl_str_mv |
parameter identification neural networks robust estimation artificial intelligence estimation algorithms |
topic |
parameter identification neural networks robust estimation artificial intelligence estimation algorithms |
description |
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-01-01 2014-05-20T13:27:12Z 2014-05-20T13:27:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763 Control Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000. http://hdl.handle.net/11449/8886 WOS:000169941000057 8212775960494686 5589838844298232 0000-0001-8510-8245 |
url |
https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763 http://hdl.handle.net/11449/8886 |
identifier_str_mv |
Control Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000. WOS:000169941000057 8212775960494686 5589838844298232 0000-0001-8510-8245 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Control Applications of Optimization 2000, Vols 1 and 2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
317-322 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129349213224960 |