A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors

Detalhes bibliográficos
Autor(a) principal: da Silva, I. N.
Data de Publicação: 2000
Outros Autores: de Souza, A. N., Bordon, M. E.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763
http://hdl.handle.net/11449/8886
Resumo: Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
id UNSP_cfbb35bd3cf4fac64f6e46a206675e23
oai_identifier_str oai:repositorio.unesp.br:11449/8886
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errorsparameter identificationneural networksrobust estimationartificial intelligenceestimation algorithmsSystems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.Univ São Paulo, UNESP,FE,DEE, Sch Engn, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilUniv São Paulo, UNESP,FE,DEE, Sch Engn, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)da Silva, I. N.de Souza, A. N.Bordon, M. E.2014-05-20T13:27:12Z2014-05-20T13:27:12Z2000-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject317-322https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763Control Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000.http://hdl.handle.net/11449/8886WOS:000169941000057821277596049468655898388442982320000-0001-8510-8245Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengControl Applications of Optimization 2000, Vols 1 and 2info:eu-repo/semantics/openAccess2024-06-28T13:34:43Zoai:repositorio.unesp.br:11449/8886Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:42:25.600501Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
title A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
spellingShingle A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
da Silva, I. N.
parameter identification
neural networks
robust estimation
artificial intelligence
estimation algorithms
title_short A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
title_full A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
title_fullStr A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
title_full_unstemmed A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
title_sort A neural network approach for robust nonlinear parameter estimation in presence of unknown-but-bounded errors
author da Silva, I. N.
author_facet da Silva, I. N.
de Souza, A. N.
Bordon, M. E.
author_role author
author2 de Souza, A. N.
Bordon, M. E.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv da Silva, I. N.
de Souza, A. N.
Bordon, M. E.
dc.subject.por.fl_str_mv parameter identification
neural networks
robust estimation
artificial intelligence
estimation algorithms
topic parameter identification
neural networks
robust estimation
artificial intelligence
estimation algorithms
description Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. This paper presents a novel approach to solve robust parameter estimation problem for nonlinear model with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
publishDate 2000
dc.date.none.fl_str_mv 2000-01-01
2014-05-20T13:27:12Z
2014-05-20T13:27:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763
Control Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000.
http://hdl.handle.net/11449/8886
WOS:000169941000057
8212775960494686
5589838844298232
0000-0001-8510-8245
url https://getinfo.de/app/A-Neural-Network-Approach-for-Robust-Nonlinear/id/BLCP%3ACN039405763
http://hdl.handle.net/11449/8886
identifier_str_mv Control Applications of Optimization 2000, Vols 1 and 2. Kidlington: Pergamon-Elsevier B.V., p. 317-322, 2000.
WOS:000169941000057
8212775960494686
5589838844298232
0000-0001-8510-8245
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Control Applications of Optimization 2000, Vols 1 and 2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 317-322
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129349213224960