Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/1748-0221/17/12/P12002 http://hdl.handle.net/11449/246469 |
Resumo: | We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector. |
id |
UNSP_cfc61651bd100087f62feafd3d740cc0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/246469 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniquesData acquisition conceptsOnline farms and online filteringTrigger algorithmsTrigger concepts and systems (hardware and software)We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector.UNESP Sao Paulo State UniversityInstitut de Physique Nucleaire de Lyon (IPNL)INFN Sezione di TriesteUniversity of BristolUniversity of FloridaSaha Institute of Nuclear Physics HBNITexas A&M UniversityINFN Sezione di PisaNorthwestern UniversityFermi National Accelerator LaboratoryUniversity of Colorado BoulderINFN Sezione di Padova Università di PadovaPeking UniversityCERN, Esplanade des Particules 1, GenevaUNESP Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Institut de Physique Nucleaire de Lyon (IPNL)INFN Sezione di TriesteUniversity of BristolUniversity of FloridaHBNITexas A&M UniversityINFN Sezione di PisaNorthwestern UniversityFermi National Accelerator LaboratoryUniversity of Colorado BoulderUniversità di PadovaPeking UniversityCERNAjuha, Sudha [UNESP]Akira Shinoda, Ailton [UNESP]Arruda Ramalho, Lucas [UNESP]Baulieu, GuillaumeBoudoul, GaelleCasarsa, MassimoCascadan, Andre [UNESP]Clement, EmyrCosta de Paiva, Thiago [UNESP]Das, SouvikDutta, SuchandraEusebi, RicardoFedi, GiacomoFinotti Ferreira, Vitor [UNESP]Hahn, KristianHu, ZhenJindariani, SergoKonigsberg, JacoboLiu, TiehuiFu Low, JiaMacDonald, EmilyOlsen, JamiesonPalla, FabrizioPozzobon, NicolaRathjens, DenisRistori, LucianoRossin, RobertoSung, KevinTran, NhanTrovato, MarcoUlmer, KeithVaz, Mario [UNESP]Viret, SebastienWu, Jin-YuanXu, ZijunZorzetti, Silvia2023-07-29T12:41:48Z2023-07-29T12:41:48Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1748-0221/17/12/P12002Journal of Instrumentation, v. 17, n. 12, 2022.1748-0221http://hdl.handle.net/11449/24646910.1088/1748-0221/17/12/P120022-s2.0-85143909380Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Instrumentationinfo:eu-repo/semantics/openAccess2023-07-29T12:41:48Zoai:repositorio.unesp.br:11449/246469Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:30:26.361459Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques |
title |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques |
spellingShingle |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques Ajuha, Sudha [UNESP] Data acquisition concepts Online farms and online filtering Trigger algorithms Trigger concepts and systems (hardware and software) |
title_short |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques |
title_full |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques |
title_fullStr |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques |
title_full_unstemmed |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques |
title_sort |
Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques |
author |
Ajuha, Sudha [UNESP] |
author_facet |
Ajuha, Sudha [UNESP] Akira Shinoda, Ailton [UNESP] Arruda Ramalho, Lucas [UNESP] Baulieu, Guillaume Boudoul, Gaelle Casarsa, Massimo Cascadan, Andre [UNESP] Clement, Emyr Costa de Paiva, Thiago [UNESP] Das, Souvik Dutta, Suchandra Eusebi, Ricardo Fedi, Giacomo Finotti Ferreira, Vitor [UNESP] Hahn, Kristian Hu, Zhen Jindariani, Sergo Konigsberg, Jacobo Liu, Tiehui Fu Low, Jia MacDonald, Emily Olsen, Jamieson Palla, Fabrizio Pozzobon, Nicola Rathjens, Denis Ristori, Luciano Rossin, Roberto Sung, Kevin Tran, Nhan Trovato, Marco Ulmer, Keith Vaz, Mario [UNESP] Viret, Sebastien Wu, Jin-Yuan Xu, Zijun Zorzetti, Silvia |
author_role |
author |
author2 |
Akira Shinoda, Ailton [UNESP] Arruda Ramalho, Lucas [UNESP] Baulieu, Guillaume Boudoul, Gaelle Casarsa, Massimo Cascadan, Andre [UNESP] Clement, Emyr Costa de Paiva, Thiago [UNESP] Das, Souvik Dutta, Suchandra Eusebi, Ricardo Fedi, Giacomo Finotti Ferreira, Vitor [UNESP] Hahn, Kristian Hu, Zhen Jindariani, Sergo Konigsberg, Jacobo Liu, Tiehui Fu Low, Jia MacDonald, Emily Olsen, Jamieson Palla, Fabrizio Pozzobon, Nicola Rathjens, Denis Ristori, Luciano Rossin, Roberto Sung, Kevin Tran, Nhan Trovato, Marco Ulmer, Keith Vaz, Mario [UNESP] Viret, Sebastien Wu, Jin-Yuan Xu, Zijun Zorzetti, Silvia |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Institut de Physique Nucleaire de Lyon (IPNL) INFN Sezione di Trieste University of Bristol University of Florida HBNI Texas A&M University INFN Sezione di Pisa Northwestern University Fermi National Accelerator Laboratory University of Colorado Boulder Università di Padova Peking University CERN |
dc.contributor.author.fl_str_mv |
Ajuha, Sudha [UNESP] Akira Shinoda, Ailton [UNESP] Arruda Ramalho, Lucas [UNESP] Baulieu, Guillaume Boudoul, Gaelle Casarsa, Massimo Cascadan, Andre [UNESP] Clement, Emyr Costa de Paiva, Thiago [UNESP] Das, Souvik Dutta, Suchandra Eusebi, Ricardo Fedi, Giacomo Finotti Ferreira, Vitor [UNESP] Hahn, Kristian Hu, Zhen Jindariani, Sergo Konigsberg, Jacobo Liu, Tiehui Fu Low, Jia MacDonald, Emily Olsen, Jamieson Palla, Fabrizio Pozzobon, Nicola Rathjens, Denis Ristori, Luciano Rossin, Roberto Sung, Kevin Tran, Nhan Trovato, Marco Ulmer, Keith Vaz, Mario [UNESP] Viret, Sebastien Wu, Jin-Yuan Xu, Zijun Zorzetti, Silvia |
dc.subject.por.fl_str_mv |
Data acquisition concepts Online farms and online filtering Trigger algorithms Trigger concepts and systems (hardware and software) |
topic |
Data acquisition concepts Online farms and online filtering Trigger algorithms Trigger concepts and systems (hardware and software) |
description |
We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-01 2023-07-29T12:41:48Z 2023-07-29T12:41:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/1748-0221/17/12/P12002 Journal of Instrumentation, v. 17, n. 12, 2022. 1748-0221 http://hdl.handle.net/11449/246469 10.1088/1748-0221/17/12/P12002 2-s2.0-85143909380 |
url |
http://dx.doi.org/10.1088/1748-0221/17/12/P12002 http://hdl.handle.net/11449/246469 |
identifier_str_mv |
Journal of Instrumentation, v. 17, n. 12, 2022. 1748-0221 10.1088/1748-0221/17/12/P12002 2-s2.0-85143909380 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Instrumentation |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129433552289792 |