Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques

Detalhes bibliográficos
Autor(a) principal: Ajuha, Sudha [UNESP]
Data de Publicação: 2022
Outros Autores: Akira Shinoda, Ailton [UNESP], Arruda Ramalho, Lucas [UNESP], Baulieu, Guillaume, Boudoul, Gaelle, Casarsa, Massimo, Cascadan, Andre [UNESP], Clement, Emyr, Costa de Paiva, Thiago [UNESP], Das, Souvik, Dutta, Suchandra, Eusebi, Ricardo, Fedi, Giacomo, Finotti Ferreira, Vitor [UNESP], Hahn, Kristian, Hu, Zhen, Jindariani, Sergo, Konigsberg, Jacobo, Liu, Tiehui, Fu Low, Jia, MacDonald, Emily, Olsen, Jamieson, Palla, Fabrizio, Pozzobon, Nicola, Rathjens, Denis, Ristori, Luciano, Rossin, Roberto, Sung, Kevin, Tran, Nhan, Trovato, Marco, Ulmer, Keith, Vaz, Mario [UNESP], Viret, Sebastien, Wu, Jin-Yuan, Xu, Zijun, Zorzetti, Silvia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1748-0221/17/12/P12002
http://hdl.handle.net/11449/246469
Resumo: We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector.
id UNSP_cfc61651bd100087f62feafd3d740cc0
oai_identifier_str oai:repositorio.unesp.br:11449/246469
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniquesData acquisition conceptsOnline farms and online filteringTrigger algorithmsTrigger concepts and systems (hardware and software)We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector.UNESP Sao Paulo State UniversityInstitut de Physique Nucleaire de Lyon (IPNL)INFN Sezione di TriesteUniversity of BristolUniversity of FloridaSaha Institute of Nuclear Physics HBNITexas A&M UniversityINFN Sezione di PisaNorthwestern UniversityFermi National Accelerator LaboratoryUniversity of Colorado BoulderINFN Sezione di Padova Università di PadovaPeking UniversityCERN, Esplanade des Particules 1, GenevaUNESP Sao Paulo State UniversityUniversidade Estadual Paulista (UNESP)Institut de Physique Nucleaire de Lyon (IPNL)INFN Sezione di TriesteUniversity of BristolUniversity of FloridaHBNITexas A&M UniversityINFN Sezione di PisaNorthwestern UniversityFermi National Accelerator LaboratoryUniversity of Colorado BoulderUniversità di PadovaPeking UniversityCERNAjuha, Sudha [UNESP]Akira Shinoda, Ailton [UNESP]Arruda Ramalho, Lucas [UNESP]Baulieu, GuillaumeBoudoul, GaelleCasarsa, MassimoCascadan, Andre [UNESP]Clement, EmyrCosta de Paiva, Thiago [UNESP]Das, SouvikDutta, SuchandraEusebi, RicardoFedi, GiacomoFinotti Ferreira, Vitor [UNESP]Hahn, KristianHu, ZhenJindariani, SergoKonigsberg, JacoboLiu, TiehuiFu Low, JiaMacDonald, EmilyOlsen, JamiesonPalla, FabrizioPozzobon, NicolaRathjens, DenisRistori, LucianoRossin, RobertoSung, KevinTran, NhanTrovato, MarcoUlmer, KeithVaz, Mario [UNESP]Viret, SebastienWu, Jin-YuanXu, ZijunZorzetti, Silvia2023-07-29T12:41:48Z2023-07-29T12:41:48Z2022-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1748-0221/17/12/P12002Journal of Instrumentation, v. 17, n. 12, 2022.1748-0221http://hdl.handle.net/11449/24646910.1088/1748-0221/17/12/P120022-s2.0-85143909380Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Instrumentationinfo:eu-repo/semantics/openAccess2023-07-29T12:41:48Zoai:repositorio.unesp.br:11449/246469Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:30:26.361459Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
title Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
spellingShingle Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
Ajuha, Sudha [UNESP]
Data acquisition concepts
Online farms and online filtering
Trigger algorithms
Trigger concepts and systems (hardware and software)
title_short Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
title_full Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
title_fullStr Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
title_full_unstemmed Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
title_sort Charged particle tracking in real-time using a full-mesh data delivery architecture and associative memory techniques
author Ajuha, Sudha [UNESP]
author_facet Ajuha, Sudha [UNESP]
Akira Shinoda, Ailton [UNESP]
Arruda Ramalho, Lucas [UNESP]
Baulieu, Guillaume
Boudoul, Gaelle
Casarsa, Massimo
Cascadan, Andre [UNESP]
Clement, Emyr
Costa de Paiva, Thiago [UNESP]
Das, Souvik
Dutta, Suchandra
Eusebi, Ricardo
Fedi, Giacomo
Finotti Ferreira, Vitor [UNESP]
Hahn, Kristian
Hu, Zhen
Jindariani, Sergo
Konigsberg, Jacobo
Liu, Tiehui
Fu Low, Jia
MacDonald, Emily
Olsen, Jamieson
Palla, Fabrizio
Pozzobon, Nicola
Rathjens, Denis
Ristori, Luciano
Rossin, Roberto
Sung, Kevin
Tran, Nhan
Trovato, Marco
Ulmer, Keith
Vaz, Mario [UNESP]
Viret, Sebastien
Wu, Jin-Yuan
Xu, Zijun
Zorzetti, Silvia
author_role author
author2 Akira Shinoda, Ailton [UNESP]
Arruda Ramalho, Lucas [UNESP]
Baulieu, Guillaume
Boudoul, Gaelle
Casarsa, Massimo
Cascadan, Andre [UNESP]
Clement, Emyr
Costa de Paiva, Thiago [UNESP]
Das, Souvik
Dutta, Suchandra
Eusebi, Ricardo
Fedi, Giacomo
Finotti Ferreira, Vitor [UNESP]
Hahn, Kristian
Hu, Zhen
Jindariani, Sergo
Konigsberg, Jacobo
Liu, Tiehui
Fu Low, Jia
MacDonald, Emily
Olsen, Jamieson
Palla, Fabrizio
Pozzobon, Nicola
Rathjens, Denis
Ristori, Luciano
Rossin, Roberto
Sung, Kevin
Tran, Nhan
Trovato, Marco
Ulmer, Keith
Vaz, Mario [UNESP]
Viret, Sebastien
Wu, Jin-Yuan
Xu, Zijun
Zorzetti, Silvia
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Institut de Physique Nucleaire de Lyon (IPNL)
INFN Sezione di Trieste
University of Bristol
University of Florida
HBNI
Texas A&M University
INFN Sezione di Pisa
Northwestern University
Fermi National Accelerator Laboratory
University of Colorado Boulder
Università di Padova
Peking University
CERN
dc.contributor.author.fl_str_mv Ajuha, Sudha [UNESP]
Akira Shinoda, Ailton [UNESP]
Arruda Ramalho, Lucas [UNESP]
Baulieu, Guillaume
Boudoul, Gaelle
Casarsa, Massimo
Cascadan, Andre [UNESP]
Clement, Emyr
Costa de Paiva, Thiago [UNESP]
Das, Souvik
Dutta, Suchandra
Eusebi, Ricardo
Fedi, Giacomo
Finotti Ferreira, Vitor [UNESP]
Hahn, Kristian
Hu, Zhen
Jindariani, Sergo
Konigsberg, Jacobo
Liu, Tiehui
Fu Low, Jia
MacDonald, Emily
Olsen, Jamieson
Palla, Fabrizio
Pozzobon, Nicola
Rathjens, Denis
Ristori, Luciano
Rossin, Roberto
Sung, Kevin
Tran, Nhan
Trovato, Marco
Ulmer, Keith
Vaz, Mario [UNESP]
Viret, Sebastien
Wu, Jin-Yuan
Xu, Zijun
Zorzetti, Silvia
dc.subject.por.fl_str_mv Data acquisition concepts
Online farms and online filtering
Trigger algorithms
Trigger concepts and systems (hardware and software)
topic Data acquisition concepts
Online farms and online filtering
Trigger algorithms
Trigger concepts and systems (hardware and software)
description We present a flexible and scalable approach to address the challenges of charged particle track reconstruction in real-time event filters (Level-1 triggers) in collider physics experiments. The method described here is based on a full-mesh architecture for data distribution and relies on the Associative Memory approach to implement a pattern recognition algorithm that quickly identifies and organizes hits associated to trajectories of particles originating from particle collisions. We describe a successful implementation of a demonstration system composed of several innovative hardware and algorithmic elements. The implementation of a full-size system relies on the assumption that an Associative Memory device with the sufficient pattern density becomes available in the future, either through a dedicated ASIC or a modern FPGA. We demonstrate excellent performance in terms of track reconstruction efficiency, purity, momentum resolution, and processing time measured with data from a simulated LHC-like tracking detector.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-01
2023-07-29T12:41:48Z
2023-07-29T12:41:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1748-0221/17/12/P12002
Journal of Instrumentation, v. 17, n. 12, 2022.
1748-0221
http://hdl.handle.net/11449/246469
10.1088/1748-0221/17/12/P12002
2-s2.0-85143909380
url http://dx.doi.org/10.1088/1748-0221/17/12/P12002
http://hdl.handle.net/11449/246469
identifier_str_mv Journal of Instrumentation, v. 17, n. 12, 2022.
1748-0221
10.1088/1748-0221/17/12/P12002
2-s2.0-85143909380
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Instrumentation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129433552289792