Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)

Detalhes bibliográficos
Autor(a) principal: El Faro, Lenira
Data de Publicação: 2008
Outros Autores: Cardoso, Vera Lucia, Albuquerque, Lucia Galvão de [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/S1415-47572008000400011
http://hdl.handle.net/11449/4834
Resumo: Random regression models (RRM) were used to estimate covariance functions for 2,155 first-lactation milk yields of native Brazilian Caracu heifers. The models included contemporary group (defined as year-month of test and paddock) fixed effects, and quadratic effect of age of cow at calving. Genetic and permanent environmental effects were fitted by a random regression model and Legendre polynomials of days in milk (DIM). Schwarz's Bayesian information criteria (BIC) indicated that the best RRM assumed a six coefficient function for both random effects and a sixth order variance function for residual structure. Akaike's information criteria suggested a model with the same number of coefficients for both effects and a residual structure fitted by a step function with 15 variances. Phenotypic, additive genetic, permanent environmental and residual variances were higher at the beginning and declined during lactation. The RRM heritability estimates were 0.09 to 0.26 and generally higher at the beginning and end of lactation. Some unexpected negative genetic correlations emerged when higher order covariance functions were used. A model with four coefficients for additive genetic covariance function explains more parsimoniously the changes in genetic variation with DIM since the genetic parameter was more acceptable and BIC was close to that for a six coefficient covariance function.
id UNSP_d141daa9fa633ed90cd31e52a9b40a95
oai_identifier_str oai:repositorio.unesp.br:11449/4834
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)Covariance functionsDairy cattleGenetic parameterLongitudinal dataMilk yieldRandom regression models (RRM) were used to estimate covariance functions for 2,155 first-lactation milk yields of native Brazilian Caracu heifers. The models included contemporary group (defined as year-month of test and paddock) fixed effects, and quadratic effect of age of cow at calving. Genetic and permanent environmental effects were fitted by a random regression model and Legendre polynomials of days in milk (DIM). Schwarz's Bayesian information criteria (BIC) indicated that the best RRM assumed a six coefficient function for both random effects and a sixth order variance function for residual structure. Akaike's information criteria suggested a model with the same number of coefficients for both effects and a residual structure fitted by a step function with 15 variances. Phenotypic, additive genetic, permanent environmental and residual variances were higher at the beginning and declined during lactation. The RRM heritability estimates were 0.09 to 0.26 and generally higher at the beginning and end of lactation. Some unexpected negative genetic correlations emerged when higher order covariance functions were used. A model with four coefficients for additive genetic covariance function explains more parsimoniously the changes in genetic variation with DIM since the genetic parameter was more acceptable and BIC was close to that for a six coefficient covariance function.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Secretaria da Agricultura e Abastecimento Agência Paulista de Tecnologia dos AgronegóciosUniversidade Estadual Paulista Júlio de Mesquita Filho Faculdade de Ciências Agrárias e Veterinárias Departamento de ZootecniaUniversidade Estadual Paulista Júlio de Mesquita Filho Faculdade de Ciências Agrárias e Veterinárias Departamento de ZootecniaSociedade Brasileira de GenéticaAgência Paulista de Tecnologia dos Agronegócios (APTA)Universidade Estadual Paulista (Unesp)El Faro, LeniraCardoso, Vera LuciaAlbuquerque, Lucia Galvão de [UNESP]2014-05-20T13:18:58Z2014-05-20T13:18:58Z2008-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article665-673application/pdfhttp://dx.doi.org/10.1590/S1415-47572008000400011Genetics and Molecular Biology. Sociedade Brasileira de Genética, v. 31, n. 3, p. 665-673, 2008.1415-4757http://hdl.handle.net/11449/483410.1590/S1415-47572008000400011S1415-47572008000400011WOS:000258695800011S1415-47572008000400011.pdf5866981114947883SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGenetics and Molecular Biology1.4930,638info:eu-repo/semantics/openAccess2024-06-07T18:44:15Zoai:repositorio.unesp.br:11449/4834Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:15:33.935534Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
title Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
spellingShingle Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
El Faro, Lenira
Covariance functions
Dairy cattle
Genetic parameter
Longitudinal data
Milk yield
title_short Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
title_full Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
title_fullStr Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
title_full_unstemmed Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
title_sort Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
author El Faro, Lenira
author_facet El Faro, Lenira
Cardoso, Vera Lucia
Albuquerque, Lucia Galvão de [UNESP]
author_role author
author2 Cardoso, Vera Lucia
Albuquerque, Lucia Galvão de [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Agência Paulista de Tecnologia dos Agronegócios (APTA)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv El Faro, Lenira
Cardoso, Vera Lucia
Albuquerque, Lucia Galvão de [UNESP]
dc.subject.por.fl_str_mv Covariance functions
Dairy cattle
Genetic parameter
Longitudinal data
Milk yield
topic Covariance functions
Dairy cattle
Genetic parameter
Longitudinal data
Milk yield
description Random regression models (RRM) were used to estimate covariance functions for 2,155 first-lactation milk yields of native Brazilian Caracu heifers. The models included contemporary group (defined as year-month of test and paddock) fixed effects, and quadratic effect of age of cow at calving. Genetic and permanent environmental effects were fitted by a random regression model and Legendre polynomials of days in milk (DIM). Schwarz's Bayesian information criteria (BIC) indicated that the best RRM assumed a six coefficient function for both random effects and a sixth order variance function for residual structure. Akaike's information criteria suggested a model with the same number of coefficients for both effects and a residual structure fitted by a step function with 15 variances. Phenotypic, additive genetic, permanent environmental and residual variances were higher at the beginning and declined during lactation. The RRM heritability estimates were 0.09 to 0.26 and generally higher at the beginning and end of lactation. Some unexpected negative genetic correlations emerged when higher order covariance functions were used. A model with four coefficients for additive genetic covariance function explains more parsimoniously the changes in genetic variation with DIM since the genetic parameter was more acceptable and BIC was close to that for a six coefficient covariance function.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
2014-05-20T13:18:58Z
2014-05-20T13:18:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S1415-47572008000400011
Genetics and Molecular Biology. Sociedade Brasileira de Genética, v. 31, n. 3, p. 665-673, 2008.
1415-4757
http://hdl.handle.net/11449/4834
10.1590/S1415-47572008000400011
S1415-47572008000400011
WOS:000258695800011
S1415-47572008000400011.pdf
5866981114947883
url http://dx.doi.org/10.1590/S1415-47572008000400011
http://hdl.handle.net/11449/4834
identifier_str_mv Genetics and Molecular Biology. Sociedade Brasileira de Genética, v. 31, n. 3, p. 665-673, 2008.
1415-4757
10.1590/S1415-47572008000400011
S1415-47572008000400011
WOS:000258695800011
S1415-47572008000400011.pdf
5866981114947883
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Genetics and Molecular Biology
1.493
0,638
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 665-673
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129410201550848