Characteristic Times for the Fermi-Ulam Model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1142/S0218127421300044 http://hdl.handle.net/11449/205978 |
Resumo: | The mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi-Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ = 1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ = 2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent. |
id |
UNSP_d16634b3af84cc090b72a98c183d8d5e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/205978 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Characteristic Times for the Fermi-Ulam ModelChaosdiffusionPoincaré recurrenceThe mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi-Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ = 1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ = 2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent.Instituto Federal de Educação Ciência e Tecnologia do Sul de Minas Gerais IFSULDEMINASDepartamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515Departamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515IFSULDEMINASUniversidade Estadual Paulista (Unesp)Hermes, Joelson D. Veloso [UNESP]Leonel, Edson D. [UNESP]2021-06-25T10:24:36Z2021-06-25T10:24:36Z2021-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1142/S0218127421300044International Journal of Bifurcation and Chaos, v. 31, n. 2, 2021.0218-1274http://hdl.handle.net/11449/20597810.1142/S02181274213000442-s2.0-85101817667Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Bifurcation and Chaosinfo:eu-repo/semantics/openAccess2021-10-22T20:18:54Zoai:repositorio.unesp.br:11449/205978Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:45:07.613384Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Characteristic Times for the Fermi-Ulam Model |
title |
Characteristic Times for the Fermi-Ulam Model |
spellingShingle |
Characteristic Times for the Fermi-Ulam Model Hermes, Joelson D. Veloso [UNESP] Chaos diffusion Poincaré recurrence |
title_short |
Characteristic Times for the Fermi-Ulam Model |
title_full |
Characteristic Times for the Fermi-Ulam Model |
title_fullStr |
Characteristic Times for the Fermi-Ulam Model |
title_full_unstemmed |
Characteristic Times for the Fermi-Ulam Model |
title_sort |
Characteristic Times for the Fermi-Ulam Model |
author |
Hermes, Joelson D. Veloso [UNESP] |
author_facet |
Hermes, Joelson D. Veloso [UNESP] Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Leonel, Edson D. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
IFSULDEMINAS Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Hermes, Joelson D. Veloso [UNESP] Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Chaos diffusion Poincaré recurrence |
topic |
Chaos diffusion Poincaré recurrence |
description |
The mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi-Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ = 1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ = 2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:24:36Z 2021-06-25T10:24:36Z 2021-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1142/S0218127421300044 International Journal of Bifurcation and Chaos, v. 31, n. 2, 2021. 0218-1274 http://hdl.handle.net/11449/205978 10.1142/S0218127421300044 2-s2.0-85101817667 |
url |
http://dx.doi.org/10.1142/S0218127421300044 http://hdl.handle.net/11449/205978 |
identifier_str_mv |
International Journal of Bifurcation and Chaos, v. 31, n. 2, 2021. 0218-1274 10.1142/S0218127421300044 2-s2.0-85101817667 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Bifurcation and Chaos |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129548635602944 |