Characteristic Times for the Fermi-Ulam Model

Detalhes bibliográficos
Autor(a) principal: Hermes, Joelson D. Veloso [UNESP]
Data de Publicação: 2021
Outros Autores: Leonel, Edson D. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1142/S0218127421300044
http://hdl.handle.net/11449/205978
Resumo: The mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi-Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ = 1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ = 2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent.
id UNSP_d16634b3af84cc090b72a98c183d8d5e
oai_identifier_str oai:repositorio.unesp.br:11449/205978
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Characteristic Times for the Fermi-Ulam ModelChaosdiffusionPoincaré recurrenceThe mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi-Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ = 1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ = 2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent.Instituto Federal de Educação Ciência e Tecnologia do Sul de Minas Gerais IFSULDEMINASDepartamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515Departamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515IFSULDEMINASUniversidade Estadual Paulista (Unesp)Hermes, Joelson D. Veloso [UNESP]Leonel, Edson D. [UNESP]2021-06-25T10:24:36Z2021-06-25T10:24:36Z2021-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1142/S0218127421300044International Journal of Bifurcation and Chaos, v. 31, n. 2, 2021.0218-1274http://hdl.handle.net/11449/20597810.1142/S02181274213000442-s2.0-85101817667Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Bifurcation and Chaosinfo:eu-repo/semantics/openAccess2021-10-22T20:18:54Zoai:repositorio.unesp.br:11449/205978Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:45:07.613384Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Characteristic Times for the Fermi-Ulam Model
title Characteristic Times for the Fermi-Ulam Model
spellingShingle Characteristic Times for the Fermi-Ulam Model
Hermes, Joelson D. Veloso [UNESP]
Chaos
diffusion
Poincaré recurrence
title_short Characteristic Times for the Fermi-Ulam Model
title_full Characteristic Times for the Fermi-Ulam Model
title_fullStr Characteristic Times for the Fermi-Ulam Model
title_full_unstemmed Characteristic Times for the Fermi-Ulam Model
title_sort Characteristic Times for the Fermi-Ulam Model
author Hermes, Joelson D. Veloso [UNESP]
author_facet Hermes, Joelson D. Veloso [UNESP]
Leonel, Edson D. [UNESP]
author_role author
author2 Leonel, Edson D. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv IFSULDEMINAS
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Hermes, Joelson D. Veloso [UNESP]
Leonel, Edson D. [UNESP]
dc.subject.por.fl_str_mv Chaos
diffusion
Poincaré recurrence
topic Chaos
diffusion
Poincaré recurrence
description The mean Poincaré recurrence time as well as the Lyapunov time are measured for the Fermi-Ulam model. It is confirmed that the mean recurrence time is dependent on the size of the window chosen in the phase space where particles are allowed to return. The fractal dimension of the region is determined by the slope of the recurrence time against the size of the window and two numerical values are measured: (i) μ = 1 confirming normal diffusion for chaotic regions far from periodic domains and (ii) μ = 2 leading to anomalous diffusion measured inside islands of stability and invariant curves corresponding to regular orbits, a signature of local trapping of an ensemble of particles. The Lyapunov time is the inverse of the Lyapunov exponent. Therefore, the Lyapunov time is measured over different domains in the phase space through a direct determination of the Lyapunov exponent.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:24:36Z
2021-06-25T10:24:36Z
2021-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1142/S0218127421300044
International Journal of Bifurcation and Chaos, v. 31, n. 2, 2021.
0218-1274
http://hdl.handle.net/11449/205978
10.1142/S0218127421300044
2-s2.0-85101817667
url http://dx.doi.org/10.1142/S0218127421300044
http://hdl.handle.net/11449/205978
identifier_str_mv International Journal of Bifurcation and Chaos, v. 31, n. 2, 2021.
0218-1274
10.1142/S0218127421300044
2-s2.0-85101817667
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Bifurcation and Chaos
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129548635602944