On the hypercomplex-based search spaces for optimization purposes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-67669-2_6 http://hdl.handle.net/11449/232677 |
Resumo: | Most applications can be modeled using real-valued algebra. Nevertheless, certain problems may be better addressed using different mathematical tools. In this context, complex numbers can be viewed as an alternative to standard algebra, where imaginary numbers allow a broader collection of tools to deal with different types of problems. In addition, hypercomplex numbers extend naïve complex algebra by means of additional imaginary numbers, such as quaternions and octonions. In this work, we will review the literature concerning hypercomplex spaces with an emphasis on the main concepts and fundamentals that build the quaternion and octonion algebra, and why they are interesting approaches that can overcome some potential drawbacks of certain optimization techniques. We show that quaternion- and octonion-based algebra can be used to different optimization problems, allowing smoother fitness landscapes and providing better results than those represented in standard search spaces. |
id |
UNSP_d1bf0904fd8ac88cf58a1756dd5e1026 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/232677 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On the hypercomplex-based search spaces for optimization purposesHypercomplex numbersMeta-heuristicOctonionsOptimizationQuaternionsMost applications can be modeled using real-valued algebra. Nevertheless, certain problems may be better addressed using different mathematical tools. In this context, complex numbers can be viewed as an alternative to standard algebra, where imaginary numbers allow a broader collection of tools to deal with different types of problems. In addition, hypercomplex numbers extend naïve complex algebra by means of additional imaginary numbers, such as quaternions and octonions. In this work, we will review the literature concerning hypercomplex spaces with an emphasis on the main concepts and fundamentals that build the quaternion and octonion algebra, and why they are interesting approaches that can overcome some potential drawbacks of certain optimization techniques. We show that quaternion- and octonion-based algebra can be used to different optimization problems, allowing smoother fitness landscapes and providing better results than those represented in standard search spaces.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)School of Sciences São Paulo State UniversityDepartment of Computing São Paulo State UniversitySchool of Science and Technology Middlesex University LondonSchool of Sciences São Paulo State UniversityDepartment of Computing São Paulo State UniversityFAPESP: #2014/12236-1FAPESP: #2014/16250-1FAPESP: #2015/25739-4CNPq: #306166/2014-3Universidade Estadual Paulista (UNESP)Middlesex University LondonPapa, João Paulo [UNESP]de Rosa, Gustavo Henrique [UNESP]Yang, Xin-She2022-04-30T04:08:44Z2022-04-30T04:08:44Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart119-147http://dx.doi.org/10.1007/978-3-319-67669-2_6Studies in Computational Intelligence, v. 744, p. 119-147.1860-949Xhttp://hdl.handle.net/11449/23267710.1007/978-3-319-67669-2_62-s2.0-85033725850Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengStudies in Computational Intelligenceinfo:eu-repo/semantics/openAccess2024-04-23T16:11:01Zoai:repositorio.unesp.br:11449/232677Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:45:45.081028Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On the hypercomplex-based search spaces for optimization purposes |
title |
On the hypercomplex-based search spaces for optimization purposes |
spellingShingle |
On the hypercomplex-based search spaces for optimization purposes Papa, João Paulo [UNESP] Hypercomplex numbers Meta-heuristic Octonions Optimization Quaternions |
title_short |
On the hypercomplex-based search spaces for optimization purposes |
title_full |
On the hypercomplex-based search spaces for optimization purposes |
title_fullStr |
On the hypercomplex-based search spaces for optimization purposes |
title_full_unstemmed |
On the hypercomplex-based search spaces for optimization purposes |
title_sort |
On the hypercomplex-based search spaces for optimization purposes |
author |
Papa, João Paulo [UNESP] |
author_facet |
Papa, João Paulo [UNESP] de Rosa, Gustavo Henrique [UNESP] Yang, Xin-She |
author_role |
author |
author2 |
de Rosa, Gustavo Henrique [UNESP] Yang, Xin-She |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Middlesex University London |
dc.contributor.author.fl_str_mv |
Papa, João Paulo [UNESP] de Rosa, Gustavo Henrique [UNESP] Yang, Xin-She |
dc.subject.por.fl_str_mv |
Hypercomplex numbers Meta-heuristic Octonions Optimization Quaternions |
topic |
Hypercomplex numbers Meta-heuristic Octonions Optimization Quaternions |
description |
Most applications can be modeled using real-valued algebra. Nevertheless, certain problems may be better addressed using different mathematical tools. In this context, complex numbers can be viewed as an alternative to standard algebra, where imaginary numbers allow a broader collection of tools to deal with different types of problems. In addition, hypercomplex numbers extend naïve complex algebra by means of additional imaginary numbers, such as quaternions and octonions. In this work, we will review the literature concerning hypercomplex spaces with an emphasis on the main concepts and fundamentals that build the quaternion and octonion algebra, and why they are interesting approaches that can overcome some potential drawbacks of certain optimization techniques. We show that quaternion- and octonion-based algebra can be used to different optimization problems, allowing smoother fitness landscapes and providing better results than those represented in standard search spaces. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2022-04-30T04:08:44Z 2022-04-30T04:08:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-67669-2_6 Studies in Computational Intelligence, v. 744, p. 119-147. 1860-949X http://hdl.handle.net/11449/232677 10.1007/978-3-319-67669-2_6 2-s2.0-85033725850 |
url |
http://dx.doi.org/10.1007/978-3-319-67669-2_6 http://hdl.handle.net/11449/232677 |
identifier_str_mv |
Studies in Computational Intelligence, v. 744, p. 119-147. 1860-949X 10.1007/978-3-319-67669-2_6 2-s2.0-85033725850 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Studies in Computational Intelligence |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
119-147 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128975522758656 |