On the hypercomplex-based search spaces for optimization purposes

Detalhes bibliográficos
Autor(a) principal: Papa, João Paulo [UNESP]
Data de Publicação: 2018
Outros Autores: de Rosa, Gustavo Henrique [UNESP], Yang, Xin-She
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-67669-2_6
http://hdl.handle.net/11449/232677
Resumo: Most applications can be modeled using real-valued algebra. Nevertheless, certain problems may be better addressed using different mathematical tools. In this context, complex numbers can be viewed as an alternative to standard algebra, where imaginary numbers allow a broader collection of tools to deal with different types of problems. In addition, hypercomplex numbers extend naïve complex algebra by means of additional imaginary numbers, such as quaternions and octonions. In this work, we will review the literature concerning hypercomplex spaces with an emphasis on the main concepts and fundamentals that build the quaternion and octonion algebra, and why they are interesting approaches that can overcome some potential drawbacks of certain optimization techniques. We show that quaternion- and octonion-based algebra can be used to different optimization problems, allowing smoother fitness landscapes and providing better results than those represented in standard search spaces.
id UNSP_d1bf0904fd8ac88cf58a1756dd5e1026
oai_identifier_str oai:repositorio.unesp.br:11449/232677
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the hypercomplex-based search spaces for optimization purposesHypercomplex numbersMeta-heuristicOctonionsOptimizationQuaternionsMost applications can be modeled using real-valued algebra. Nevertheless, certain problems may be better addressed using different mathematical tools. In this context, complex numbers can be viewed as an alternative to standard algebra, where imaginary numbers allow a broader collection of tools to deal with different types of problems. In addition, hypercomplex numbers extend naïve complex algebra by means of additional imaginary numbers, such as quaternions and octonions. In this work, we will review the literature concerning hypercomplex spaces with an emphasis on the main concepts and fundamentals that build the quaternion and octonion algebra, and why they are interesting approaches that can overcome some potential drawbacks of certain optimization techniques. We show that quaternion- and octonion-based algebra can be used to different optimization problems, allowing smoother fitness landscapes and providing better results than those represented in standard search spaces.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)School of Sciences São Paulo State UniversityDepartment of Computing São Paulo State UniversitySchool of Science and Technology Middlesex University LondonSchool of Sciences São Paulo State UniversityDepartment of Computing São Paulo State UniversityFAPESP: #2014/12236-1FAPESP: #2014/16250-1FAPESP: #2015/25739-4CNPq: #306166/2014-3Universidade Estadual Paulista (UNESP)Middlesex University LondonPapa, João Paulo [UNESP]de Rosa, Gustavo Henrique [UNESP]Yang, Xin-She2022-04-30T04:08:44Z2022-04-30T04:08:44Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart119-147http://dx.doi.org/10.1007/978-3-319-67669-2_6Studies in Computational Intelligence, v. 744, p. 119-147.1860-949Xhttp://hdl.handle.net/11449/23267710.1007/978-3-319-67669-2_62-s2.0-85033725850Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengStudies in Computational Intelligenceinfo:eu-repo/semantics/openAccess2024-04-23T16:11:01Zoai:repositorio.unesp.br:11449/232677Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:45:45.081028Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the hypercomplex-based search spaces for optimization purposes
title On the hypercomplex-based search spaces for optimization purposes
spellingShingle On the hypercomplex-based search spaces for optimization purposes
Papa, João Paulo [UNESP]
Hypercomplex numbers
Meta-heuristic
Octonions
Optimization
Quaternions
title_short On the hypercomplex-based search spaces for optimization purposes
title_full On the hypercomplex-based search spaces for optimization purposes
title_fullStr On the hypercomplex-based search spaces for optimization purposes
title_full_unstemmed On the hypercomplex-based search spaces for optimization purposes
title_sort On the hypercomplex-based search spaces for optimization purposes
author Papa, João Paulo [UNESP]
author_facet Papa, João Paulo [UNESP]
de Rosa, Gustavo Henrique [UNESP]
Yang, Xin-She
author_role author
author2 de Rosa, Gustavo Henrique [UNESP]
Yang, Xin-She
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Middlesex University London
dc.contributor.author.fl_str_mv Papa, João Paulo [UNESP]
de Rosa, Gustavo Henrique [UNESP]
Yang, Xin-She
dc.subject.por.fl_str_mv Hypercomplex numbers
Meta-heuristic
Octonions
Optimization
Quaternions
topic Hypercomplex numbers
Meta-heuristic
Octonions
Optimization
Quaternions
description Most applications can be modeled using real-valued algebra. Nevertheless, certain problems may be better addressed using different mathematical tools. In this context, complex numbers can be viewed as an alternative to standard algebra, where imaginary numbers allow a broader collection of tools to deal with different types of problems. In addition, hypercomplex numbers extend naïve complex algebra by means of additional imaginary numbers, such as quaternions and octonions. In this work, we will review the literature concerning hypercomplex spaces with an emphasis on the main concepts and fundamentals that build the quaternion and octonion algebra, and why they are interesting approaches that can overcome some potential drawbacks of certain optimization techniques. We show that quaternion- and octonion-based algebra can be used to different optimization problems, allowing smoother fitness landscapes and providing better results than those represented in standard search spaces.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
2022-04-30T04:08:44Z
2022-04-30T04:08:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-67669-2_6
Studies in Computational Intelligence, v. 744, p. 119-147.
1860-949X
http://hdl.handle.net/11449/232677
10.1007/978-3-319-67669-2_6
2-s2.0-85033725850
url http://dx.doi.org/10.1007/978-3-319-67669-2_6
http://hdl.handle.net/11449/232677
identifier_str_mv Studies in Computational Intelligence, v. 744, p. 119-147.
1860-949X
10.1007/978-3-319-67669-2_6
2-s2.0-85033725850
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Studies in Computational Intelligence
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 119-147
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128975522758656