Validation of white oat yield estimation models using vegetation indices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/1678-4499.20190387 http://hdl.handle.net/11449/196949 |
Resumo: | The use of remote sensing in agriculture presents some practical applications in crop production forecast. In this context, studies with remote sensing are scarce for crops such as white oats, which may indicate the capacity of using this technique in the crop. The aim of this study was to evaluate the accuracy in validation of white oat biomass and grain yield estimates by spectral models previously calibrated using two vegetation indices (NDVI and IRVI) at three phenological stages. The mean values of NDVI and IRVI were correlated with the grain and biomass yield of white oats to obtain regression equations. The accuracy was verified by the determination coefficient (R-2), root mean square error (RMSE) and mean bias error (MBE). The models were calibrated using data from a field experiment carried out in 2017 and validated with data from the same experiment, but conducted in 2018. The models had good generalization capacity for estimating yield of white oats, especially for biomass yield. Parametrized models in more advanced phenological stages, showed lower error of estimation. Models calibrated with the vegetation index IRVI had lower error of estimation than when calibrated with NDVI. |
id |
UNSP_d2003d217cc4f5dcc618bfb8cf705207 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/196949 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Validation of white oat yield estimation models using vegetation indicesAvena sativa L.IRVImodelingNDVIremote sensingThe use of remote sensing in agriculture presents some practical applications in crop production forecast. In this context, studies with remote sensing are scarce for crops such as white oats, which may indicate the capacity of using this technique in the crop. The aim of this study was to evaluate the accuracy in validation of white oat biomass and grain yield estimates by spectral models previously calibrated using two vegetation indices (NDVI and IRVI) at three phenological stages. The mean values of NDVI and IRVI were correlated with the grain and biomass yield of white oats to obtain regression equations. The accuracy was verified by the determination coefficient (R-2), root mean square error (RMSE) and mean bias error (MBE). The models were calibrated using data from a field experiment carried out in 2017 and validated with data from the same experiment, but conducted in 2018. The models had good generalization capacity for estimating yield of white oats, especially for biomass yield. Parametrized models in more advanced phenological stages, showed lower error of estimation. Models calibrated with the vegetation index IRVI had lower error of estimation than when calibrated with NDVI.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Paulista, Fac Ciencias Agr & Vet, Dept Engn Rural, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Ciencias Prod Agr, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Engn Rural, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Ciencias Prod Agr, Jaboticabal, SP, BrazilInst AgronomicoUniversidade Estadual Paulista (Unesp)Coelho, Anderson Prates [UNESP]Faria, Rogerio Teixeira de [UNESP]Leal, Fabio Tiraboschi [UNESP]Barbosa, Jose de Arruda [UNESP]Rosalen, David Luciano [UNESP]2020-12-10T20:01:24Z2020-12-10T20:01:24Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article236-241application/pdfhttp://dx.doi.org/10.1590/1678-4499.20190387Bragantia. Campinas: Inst Agronomico, v. 79, n. 2, p. 236-241, 2020.0006-8705http://hdl.handle.net/11449/19694910.1590/1678-4499.20190387S0006-87052020000200236WOS:000538148300007S0006-87052020000200236.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBragantiainfo:eu-repo/semantics/openAccess2024-06-06T15:18:42Zoai:repositorio.unesp.br:11449/196949Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:42:20.423421Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Validation of white oat yield estimation models using vegetation indices |
title |
Validation of white oat yield estimation models using vegetation indices |
spellingShingle |
Validation of white oat yield estimation models using vegetation indices Coelho, Anderson Prates [UNESP] Avena sativa L. IRVI modeling NDVI remote sensing |
title_short |
Validation of white oat yield estimation models using vegetation indices |
title_full |
Validation of white oat yield estimation models using vegetation indices |
title_fullStr |
Validation of white oat yield estimation models using vegetation indices |
title_full_unstemmed |
Validation of white oat yield estimation models using vegetation indices |
title_sort |
Validation of white oat yield estimation models using vegetation indices |
author |
Coelho, Anderson Prates [UNESP] |
author_facet |
Coelho, Anderson Prates [UNESP] Faria, Rogerio Teixeira de [UNESP] Leal, Fabio Tiraboschi [UNESP] Barbosa, Jose de Arruda [UNESP] Rosalen, David Luciano [UNESP] |
author_role |
author |
author2 |
Faria, Rogerio Teixeira de [UNESP] Leal, Fabio Tiraboschi [UNESP] Barbosa, Jose de Arruda [UNESP] Rosalen, David Luciano [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Coelho, Anderson Prates [UNESP] Faria, Rogerio Teixeira de [UNESP] Leal, Fabio Tiraboschi [UNESP] Barbosa, Jose de Arruda [UNESP] Rosalen, David Luciano [UNESP] |
dc.subject.por.fl_str_mv |
Avena sativa L. IRVI modeling NDVI remote sensing |
topic |
Avena sativa L. IRVI modeling NDVI remote sensing |
description |
The use of remote sensing in agriculture presents some practical applications in crop production forecast. In this context, studies with remote sensing are scarce for crops such as white oats, which may indicate the capacity of using this technique in the crop. The aim of this study was to evaluate the accuracy in validation of white oat biomass and grain yield estimates by spectral models previously calibrated using two vegetation indices (NDVI and IRVI) at three phenological stages. The mean values of NDVI and IRVI were correlated with the grain and biomass yield of white oats to obtain regression equations. The accuracy was verified by the determination coefficient (R-2), root mean square error (RMSE) and mean bias error (MBE). The models were calibrated using data from a field experiment carried out in 2017 and validated with data from the same experiment, but conducted in 2018. The models had good generalization capacity for estimating yield of white oats, especially for biomass yield. Parametrized models in more advanced phenological stages, showed lower error of estimation. Models calibrated with the vegetation index IRVI had lower error of estimation than when calibrated with NDVI. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-10T20:01:24Z 2020-12-10T20:01:24Z 2020-04-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/1678-4499.20190387 Bragantia. Campinas: Inst Agronomico, v. 79, n. 2, p. 236-241, 2020. 0006-8705 http://hdl.handle.net/11449/196949 10.1590/1678-4499.20190387 S0006-87052020000200236 WOS:000538148300007 S0006-87052020000200236.pdf |
url |
http://dx.doi.org/10.1590/1678-4499.20190387 http://hdl.handle.net/11449/196949 |
identifier_str_mv |
Bragantia. Campinas: Inst Agronomico, v. 79, n. 2, p. 236-241, 2020. 0006-8705 10.1590/1678-4499.20190387 S0006-87052020000200236 WOS:000538148300007 S0006-87052020000200236.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bragantia |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
236-241 application/pdf |
dc.publisher.none.fl_str_mv |
Inst Agronomico |
publisher.none.fl_str_mv |
Inst Agronomico |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129237131984896 |