Validation of white oat yield estimation models using vegetation indices

Detalhes bibliográficos
Autor(a) principal: Coelho, Anderson Prates [UNESP]
Data de Publicação: 2020
Outros Autores: Faria, Rogerio Teixeira de [UNESP], Leal, Fabio Tiraboschi [UNESP], Barbosa, Jose de Arruda [UNESP], Rosalen, David Luciano [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/1678-4499.20190387
http://hdl.handle.net/11449/196949
Resumo: The use of remote sensing in agriculture presents some practical applications in crop production forecast. In this context, studies with remote sensing are scarce for crops such as white oats, which may indicate the capacity of using this technique in the crop. The aim of this study was to evaluate the accuracy in validation of white oat biomass and grain yield estimates by spectral models previously calibrated using two vegetation indices (NDVI and IRVI) at three phenological stages. The mean values of NDVI and IRVI were correlated with the grain and biomass yield of white oats to obtain regression equations. The accuracy was verified by the determination coefficient (R-2), root mean square error (RMSE) and mean bias error (MBE). The models were calibrated using data from a field experiment carried out in 2017 and validated with data from the same experiment, but conducted in 2018. The models had good generalization capacity for estimating yield of white oats, especially for biomass yield. Parametrized models in more advanced phenological stages, showed lower error of estimation. Models calibrated with the vegetation index IRVI had lower error of estimation than when calibrated with NDVI.
id UNSP_d2003d217cc4f5dcc618bfb8cf705207
oai_identifier_str oai:repositorio.unesp.br:11449/196949
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Validation of white oat yield estimation models using vegetation indicesAvena sativa L.IRVImodelingNDVIremote sensingThe use of remote sensing in agriculture presents some practical applications in crop production forecast. In this context, studies with remote sensing are scarce for crops such as white oats, which may indicate the capacity of using this technique in the crop. The aim of this study was to evaluate the accuracy in validation of white oat biomass and grain yield estimates by spectral models previously calibrated using two vegetation indices (NDVI and IRVI) at three phenological stages. The mean values of NDVI and IRVI were correlated with the grain and biomass yield of white oats to obtain regression equations. The accuracy was verified by the determination coefficient (R-2), root mean square error (RMSE) and mean bias error (MBE). The models were calibrated using data from a field experiment carried out in 2017 and validated with data from the same experiment, but conducted in 2018. The models had good generalization capacity for estimating yield of white oats, especially for biomass yield. Parametrized models in more advanced phenological stages, showed lower error of estimation. Models calibrated with the vegetation index IRVI had lower error of estimation than when calibrated with NDVI.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Paulista, Fac Ciencias Agr & Vet, Dept Engn Rural, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Ciencias Prod Agr, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Engn Rural, Jaboticabal, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Dept Ciencias Prod Agr, Jaboticabal, SP, BrazilInst AgronomicoUniversidade Estadual Paulista (Unesp)Coelho, Anderson Prates [UNESP]Faria, Rogerio Teixeira de [UNESP]Leal, Fabio Tiraboschi [UNESP]Barbosa, Jose de Arruda [UNESP]Rosalen, David Luciano [UNESP]2020-12-10T20:01:24Z2020-12-10T20:01:24Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article236-241application/pdfhttp://dx.doi.org/10.1590/1678-4499.20190387Bragantia. Campinas: Inst Agronomico, v. 79, n. 2, p. 236-241, 2020.0006-8705http://hdl.handle.net/11449/19694910.1590/1678-4499.20190387S0006-87052020000200236WOS:000538148300007S0006-87052020000200236.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBragantiainfo:eu-repo/semantics/openAccess2024-06-06T15:18:42Zoai:repositorio.unesp.br:11449/196949Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:42:20.423421Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Validation of white oat yield estimation models using vegetation indices
title Validation of white oat yield estimation models using vegetation indices
spellingShingle Validation of white oat yield estimation models using vegetation indices
Coelho, Anderson Prates [UNESP]
Avena sativa L.
IRVI
modeling
NDVI
remote sensing
title_short Validation of white oat yield estimation models using vegetation indices
title_full Validation of white oat yield estimation models using vegetation indices
title_fullStr Validation of white oat yield estimation models using vegetation indices
title_full_unstemmed Validation of white oat yield estimation models using vegetation indices
title_sort Validation of white oat yield estimation models using vegetation indices
author Coelho, Anderson Prates [UNESP]
author_facet Coelho, Anderson Prates [UNESP]
Faria, Rogerio Teixeira de [UNESP]
Leal, Fabio Tiraboschi [UNESP]
Barbosa, Jose de Arruda [UNESP]
Rosalen, David Luciano [UNESP]
author_role author
author2 Faria, Rogerio Teixeira de [UNESP]
Leal, Fabio Tiraboschi [UNESP]
Barbosa, Jose de Arruda [UNESP]
Rosalen, David Luciano [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Coelho, Anderson Prates [UNESP]
Faria, Rogerio Teixeira de [UNESP]
Leal, Fabio Tiraboschi [UNESP]
Barbosa, Jose de Arruda [UNESP]
Rosalen, David Luciano [UNESP]
dc.subject.por.fl_str_mv Avena sativa L.
IRVI
modeling
NDVI
remote sensing
topic Avena sativa L.
IRVI
modeling
NDVI
remote sensing
description The use of remote sensing in agriculture presents some practical applications in crop production forecast. In this context, studies with remote sensing are scarce for crops such as white oats, which may indicate the capacity of using this technique in the crop. The aim of this study was to evaluate the accuracy in validation of white oat biomass and grain yield estimates by spectral models previously calibrated using two vegetation indices (NDVI and IRVI) at three phenological stages. The mean values of NDVI and IRVI were correlated with the grain and biomass yield of white oats to obtain regression equations. The accuracy was verified by the determination coefficient (R-2), root mean square error (RMSE) and mean bias error (MBE). The models were calibrated using data from a field experiment carried out in 2017 and validated with data from the same experiment, but conducted in 2018. The models had good generalization capacity for estimating yield of white oats, especially for biomass yield. Parametrized models in more advanced phenological stages, showed lower error of estimation. Models calibrated with the vegetation index IRVI had lower error of estimation than when calibrated with NDVI.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T20:01:24Z
2020-12-10T20:01:24Z
2020-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1678-4499.20190387
Bragantia. Campinas: Inst Agronomico, v. 79, n. 2, p. 236-241, 2020.
0006-8705
http://hdl.handle.net/11449/196949
10.1590/1678-4499.20190387
S0006-87052020000200236
WOS:000538148300007
S0006-87052020000200236.pdf
url http://dx.doi.org/10.1590/1678-4499.20190387
http://hdl.handle.net/11449/196949
identifier_str_mv Bragantia. Campinas: Inst Agronomico, v. 79, n. 2, p. 236-241, 2020.
0006-8705
10.1590/1678-4499.20190387
S0006-87052020000200236
WOS:000538148300007
S0006-87052020000200236.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Bragantia
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 236-241
application/pdf
dc.publisher.none.fl_str_mv Inst Agronomico
publisher.none.fl_str_mv Inst Agronomico
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129237131984896