Hybrid visualization approach to show documents similarity and content in a single view
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/info9060129 http://hdl.handle.net/11449/179939 |
Resumo: | Multidimensional projection techniques can be employed to project datasets from a higher to a lower dimensional space (e.g., 2D space). These techniques can be used to present the relationships of dataset instances based on distance by grouping or separating clusters of instances in the projected space. Several works have used multidimensional projections to aid in the exploration of document collections. Even though the projection techniques can organize a dataset, the user needs to read each document to understand the cluster generation. Alternatively, techniques such as topic extraction or tag clouds can be employed to present a summary of the document contents. To minimize the exploratory work and to aid in cluster analysis, this work proposes a new hybrid visualization to show both document relationship and content in a single view, employing multidimensional projections to relate documents and tag clouds. We show the effectiveness of the proposed approach in the exploration of two document collections composed by world news. |
id |
UNSP_d35385354254242943447c07a86eb1c5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179939 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Hybrid visualization approach to show documents similarity and content in a single viewDocument pre-processingDocument similarityHybrid visualizationMultidimensional projectionTag cloudText miningMultidimensional projection techniques can be employed to project datasets from a higher to a lower dimensional space (e.g., 2D space). These techniques can be used to present the relationships of dataset instances based on distance by grouping or separating clusters of instances in the projected space. Several works have used multidimensional projections to aid in the exploration of document collections. Even though the projection techniques can organize a dataset, the user needs to read each document to understand the cluster generation. Alternatively, techniques such as topic extraction or tag clouds can be employed to present a summary of the document contents. To minimize the exploratory work and to aid in cluster analysis, this work proposes a new hybrid visualization to show both document relationship and content in a single view, employing multidimensional projections to relate documents and tag clouds. We show the effectiveness of the proposed approach in the exploration of two document collections composed by world news.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática e Computação São Paulo State University-UNESPDepartamento de Matemática e Computação São Paulo State University-UNESPFAPESP: #2013/03452-0Universidade Estadual Paulista (Unesp)Andreotti, Andre Luiz Dias [UNESP]Silva, Lenon Fachiano [UNESP]Eler, Danilo Medeiros [UNESP]2018-12-11T17:37:22Z2018-12-11T17:37:22Z2018-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.3390/info9060129Information (Switzerland), v. 9, n. 6, 2018.2078-2489http://hdl.handle.net/11449/17993910.3390/info90601292-s2.0-850483941522-s2.0-85048394152.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation (Switzerland)0,222info:eu-repo/semantics/openAccess2024-06-19T14:32:16Zoai:repositorio.unesp.br:11449/179939Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:02:25.889086Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Hybrid visualization approach to show documents similarity and content in a single view |
title |
Hybrid visualization approach to show documents similarity and content in a single view |
spellingShingle |
Hybrid visualization approach to show documents similarity and content in a single view Andreotti, Andre Luiz Dias [UNESP] Document pre-processing Document similarity Hybrid visualization Multidimensional projection Tag cloud Text mining |
title_short |
Hybrid visualization approach to show documents similarity and content in a single view |
title_full |
Hybrid visualization approach to show documents similarity and content in a single view |
title_fullStr |
Hybrid visualization approach to show documents similarity and content in a single view |
title_full_unstemmed |
Hybrid visualization approach to show documents similarity and content in a single view |
title_sort |
Hybrid visualization approach to show documents similarity and content in a single view |
author |
Andreotti, Andre Luiz Dias [UNESP] |
author_facet |
Andreotti, Andre Luiz Dias [UNESP] Silva, Lenon Fachiano [UNESP] Eler, Danilo Medeiros [UNESP] |
author_role |
author |
author2 |
Silva, Lenon Fachiano [UNESP] Eler, Danilo Medeiros [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Andreotti, Andre Luiz Dias [UNESP] Silva, Lenon Fachiano [UNESP] Eler, Danilo Medeiros [UNESP] |
dc.subject.por.fl_str_mv |
Document pre-processing Document similarity Hybrid visualization Multidimensional projection Tag cloud Text mining |
topic |
Document pre-processing Document similarity Hybrid visualization Multidimensional projection Tag cloud Text mining |
description |
Multidimensional projection techniques can be employed to project datasets from a higher to a lower dimensional space (e.g., 2D space). These techniques can be used to present the relationships of dataset instances based on distance by grouping or separating clusters of instances in the projected space. Several works have used multidimensional projections to aid in the exploration of document collections. Even though the projection techniques can organize a dataset, the user needs to read each document to understand the cluster generation. Alternatively, techniques such as topic extraction or tag clouds can be employed to present a summary of the document contents. To minimize the exploratory work and to aid in cluster analysis, this work proposes a new hybrid visualization to show both document relationship and content in a single view, employing multidimensional projections to relate documents and tag clouds. We show the effectiveness of the proposed approach in the exploration of two document collections composed by world news. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:37:22Z 2018-12-11T17:37:22Z 2018-05-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/info9060129 Information (Switzerland), v. 9, n. 6, 2018. 2078-2489 http://hdl.handle.net/11449/179939 10.3390/info9060129 2-s2.0-85048394152 2-s2.0-85048394152.pdf |
url |
http://dx.doi.org/10.3390/info9060129 http://hdl.handle.net/11449/179939 |
identifier_str_mv |
Information (Switzerland), v. 9, n. 6, 2018. 2078-2489 10.3390/info9060129 2-s2.0-85048394152 2-s2.0-85048394152.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Information (Switzerland) 0,222 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129575594491904 |