Hybrid visualization approach to show documents similarity and content in a single view

Detalhes bibliográficos
Autor(a) principal: Andreotti, Andre Luiz Dias [UNESP]
Data de Publicação: 2018
Outros Autores: Silva, Lenon Fachiano [UNESP], Eler, Danilo Medeiros [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/info9060129
http://hdl.handle.net/11449/179939
Resumo: Multidimensional projection techniques can be employed to project datasets from a higher to a lower dimensional space (e.g., 2D space). These techniques can be used to present the relationships of dataset instances based on distance by grouping or separating clusters of instances in the projected space. Several works have used multidimensional projections to aid in the exploration of document collections. Even though the projection techniques can organize a dataset, the user needs to read each document to understand the cluster generation. Alternatively, techniques such as topic extraction or tag clouds can be employed to present a summary of the document contents. To minimize the exploratory work and to aid in cluster analysis, this work proposes a new hybrid visualization to show both document relationship and content in a single view, employing multidimensional projections to relate documents and tag clouds. We show the effectiveness of the proposed approach in the exploration of two document collections composed by world news.
id UNSP_d35385354254242943447c07a86eb1c5
oai_identifier_str oai:repositorio.unesp.br:11449/179939
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Hybrid visualization approach to show documents similarity and content in a single viewDocument pre-processingDocument similarityHybrid visualizationMultidimensional projectionTag cloudText miningMultidimensional projection techniques can be employed to project datasets from a higher to a lower dimensional space (e.g., 2D space). These techniques can be used to present the relationships of dataset instances based on distance by grouping or separating clusters of instances in the projected space. Several works have used multidimensional projections to aid in the exploration of document collections. Even though the projection techniques can organize a dataset, the user needs to read each document to understand the cluster generation. Alternatively, techniques such as topic extraction or tag clouds can be employed to present a summary of the document contents. To minimize the exploratory work and to aid in cluster analysis, this work proposes a new hybrid visualization to show both document relationship and content in a single view, employing multidimensional projections to relate documents and tag clouds. We show the effectiveness of the proposed approach in the exploration of two document collections composed by world news.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática e Computação São Paulo State University-UNESPDepartamento de Matemática e Computação São Paulo State University-UNESPFAPESP: #2013/03452-0Universidade Estadual Paulista (Unesp)Andreotti, Andre Luiz Dias [UNESP]Silva, Lenon Fachiano [UNESP]Eler, Danilo Medeiros [UNESP]2018-12-11T17:37:22Z2018-12-11T17:37:22Z2018-05-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.3390/info9060129Information (Switzerland), v. 9, n. 6, 2018.2078-2489http://hdl.handle.net/11449/17993910.3390/info90601292-s2.0-850483941522-s2.0-85048394152.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation (Switzerland)0,222info:eu-repo/semantics/openAccess2024-06-19T14:32:16Zoai:repositorio.unesp.br:11449/179939Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:02:25.889086Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Hybrid visualization approach to show documents similarity and content in a single view
title Hybrid visualization approach to show documents similarity and content in a single view
spellingShingle Hybrid visualization approach to show documents similarity and content in a single view
Andreotti, Andre Luiz Dias [UNESP]
Document pre-processing
Document similarity
Hybrid visualization
Multidimensional projection
Tag cloud
Text mining
title_short Hybrid visualization approach to show documents similarity and content in a single view
title_full Hybrid visualization approach to show documents similarity and content in a single view
title_fullStr Hybrid visualization approach to show documents similarity and content in a single view
title_full_unstemmed Hybrid visualization approach to show documents similarity and content in a single view
title_sort Hybrid visualization approach to show documents similarity and content in a single view
author Andreotti, Andre Luiz Dias [UNESP]
author_facet Andreotti, Andre Luiz Dias [UNESP]
Silva, Lenon Fachiano [UNESP]
Eler, Danilo Medeiros [UNESP]
author_role author
author2 Silva, Lenon Fachiano [UNESP]
Eler, Danilo Medeiros [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Andreotti, Andre Luiz Dias [UNESP]
Silva, Lenon Fachiano [UNESP]
Eler, Danilo Medeiros [UNESP]
dc.subject.por.fl_str_mv Document pre-processing
Document similarity
Hybrid visualization
Multidimensional projection
Tag cloud
Text mining
topic Document pre-processing
Document similarity
Hybrid visualization
Multidimensional projection
Tag cloud
Text mining
description Multidimensional projection techniques can be employed to project datasets from a higher to a lower dimensional space (e.g., 2D space). These techniques can be used to present the relationships of dataset instances based on distance by grouping or separating clusters of instances in the projected space. Several works have used multidimensional projections to aid in the exploration of document collections. Even though the projection techniques can organize a dataset, the user needs to read each document to understand the cluster generation. Alternatively, techniques such as topic extraction or tag clouds can be employed to present a summary of the document contents. To minimize the exploratory work and to aid in cluster analysis, this work proposes a new hybrid visualization to show both document relationship and content in a single view, employing multidimensional projections to relate documents and tag clouds. We show the effectiveness of the proposed approach in the exploration of two document collections composed by world news.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:37:22Z
2018-12-11T17:37:22Z
2018-05-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/info9060129
Information (Switzerland), v. 9, n. 6, 2018.
2078-2489
http://hdl.handle.net/11449/179939
10.3390/info9060129
2-s2.0-85048394152
2-s2.0-85048394152.pdf
url http://dx.doi.org/10.3390/info9060129
http://hdl.handle.net/11449/179939
identifier_str_mv Information (Switzerland), v. 9, n. 6, 2018.
2078-2489
10.3390/info9060129
2-s2.0-85048394152
2-s2.0-85048394152.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Information (Switzerland)
0,222
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129575594491904