Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study

Detalhes bibliográficos
Autor(a) principal: Sousa-Junior, Ailton A.
Data de Publicação: 2020
Outros Autores: Mendanha, Sebastião A., Carrião, Marcus S., Capistrano, Gustavo, Próspero, André G. [UNESP], Soares, Guilherme A. [UNESP], Cintra, Emílio R., Santos, Sônia F.O., Zufelato, Nicholas, Alonso, Antônio, Lima, Eliana M., Miranda, José Ricardo A. [UNESP], Silveira-Lacerda, Elisângela De P., Cardoso, Cléver G., Bakuzis, Andris F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acs.molpharmaceut.9b01094
http://hdl.handle.net/11449/198599
Resumo: Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.
id UNSP_d41608ee13c3a860cf63ac79819654aa
oai_identifier_str oai:repositorio.unesp.br:11449/198599
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Studyiron oxide-based nanoparticlesmagnetic hyperthermiamembrane-coated nanoparticlesnear-infrared dyepharmacokinetic modelphotothermal therapytumor delivery efficiencyDelivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.Physics Institute Federal University of GoiásBiomagnetism Lab Physics and Biophysics Department São Paulo State UniversityLaboratory of Pharmaceutical Nanotechnology and Drug Delivery Systems School of Pharmacy Federal University of GoiásBiological Sciences Institute Federal University of GoiásBiomagnetism Lab Physics and Biophysics Department São Paulo State UniversityUniversidade Federal de Goiás (UFG)Universidade Estadual Paulista (Unesp)Sousa-Junior, Ailton A.Mendanha, Sebastião A.Carrião, Marcus S.Capistrano, GustavoPróspero, André G. [UNESP]Soares, Guilherme A. [UNESP]Cintra, Emílio R.Santos, Sônia F.O.Zufelato, NicholasAlonso, AntônioLima, Eliana M.Miranda, José Ricardo A. [UNESP]Silveira-Lacerda, Elisângela De P.Cardoso, Cléver G.Bakuzis, Andris F.2020-12-12T01:17:17Z2020-12-12T01:17:17Z2020-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article837-851http://dx.doi.org/10.1021/acs.molpharmaceut.9b01094Molecular Pharmaceutics, v. 17, n. 3, p. 837-851, 2020.1543-83921543-8384http://hdl.handle.net/11449/19859910.1021/acs.molpharmaceut.9b010942-s2.0-85081072742Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMolecular Pharmaceuticsinfo:eu-repo/semantics/openAccess2021-10-22T17:19:55Zoai:repositorio.unesp.br:11449/198599Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-22T17:19:55Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
title Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
spellingShingle Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
Sousa-Junior, Ailton A.
iron oxide-based nanoparticles
magnetic hyperthermia
membrane-coated nanoparticles
near-infrared dye
pharmacokinetic model
photothermal therapy
tumor delivery efficiency
title_short Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
title_full Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
title_fullStr Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
title_full_unstemmed Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
title_sort Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study
author Sousa-Junior, Ailton A.
author_facet Sousa-Junior, Ailton A.
Mendanha, Sebastião A.
Carrião, Marcus S.
Capistrano, Gustavo
Próspero, André G. [UNESP]
Soares, Guilherme A. [UNESP]
Cintra, Emílio R.
Santos, Sônia F.O.
Zufelato, Nicholas
Alonso, Antônio
Lima, Eliana M.
Miranda, José Ricardo A. [UNESP]
Silveira-Lacerda, Elisângela De P.
Cardoso, Cléver G.
Bakuzis, Andris F.
author_role author
author2 Mendanha, Sebastião A.
Carrião, Marcus S.
Capistrano, Gustavo
Próspero, André G. [UNESP]
Soares, Guilherme A. [UNESP]
Cintra, Emílio R.
Santos, Sônia F.O.
Zufelato, Nicholas
Alonso, Antônio
Lima, Eliana M.
Miranda, José Ricardo A. [UNESP]
Silveira-Lacerda, Elisângela De P.
Cardoso, Cléver G.
Bakuzis, Andris F.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Goiás (UFG)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Sousa-Junior, Ailton A.
Mendanha, Sebastião A.
Carrião, Marcus S.
Capistrano, Gustavo
Próspero, André G. [UNESP]
Soares, Guilherme A. [UNESP]
Cintra, Emílio R.
Santos, Sônia F.O.
Zufelato, Nicholas
Alonso, Antônio
Lima, Eliana M.
Miranda, José Ricardo A. [UNESP]
Silveira-Lacerda, Elisângela De P.
Cardoso, Cléver G.
Bakuzis, Andris F.
dc.subject.por.fl_str_mv iron oxide-based nanoparticles
magnetic hyperthermia
membrane-coated nanoparticles
near-infrared dye
pharmacokinetic model
photothermal therapy
tumor delivery efficiency
topic iron oxide-based nanoparticles
magnetic hyperthermia
membrane-coated nanoparticles
near-infrared dye
pharmacokinetic model
photothermal therapy
tumor delivery efficiency
description Delivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model). MMFns owe their magnetic and fluorescent properties to the incorporation of manganese ferrite nanoparticles (MnFe2O4 NPs) and IR-780 (a lipophilic indocyanine fluorescent dye), respectively, to their erythrocyte membrane-derived camouflage. MMFn composition, morphology, and size, as well as optical absorption, zeta potential, and fluorescent, magnetic, and magnetothermal properties, are thoroughly examined in vitro. We then present an analytical pharmacokinetic (PK) model capable of predicting the delivery efficiency (DE) and the time of peak tumor uptake (tmax), as well as changes in DE and tmax due to modulations of the tumor microenvironment, for potentially any nanocarrier. Experimental PK data sets (blood and tumor amounts of MMFns) are simultaneously fit to the model equations using the PK modeling software Monolix. We then validate our model analytical solutions with the numerical solutions provided by Monolix. We also demonstrate how our a priori nonmechanistic model for passive targeting relates to a previously reported mechanistic model for active targeting. All in vivo PK studies, as well as in vivo and ex vivo biodistribution studies, were conducted using two noninvasive techniques, namely, fluorescence molecular tomography (FMT) and alternating current biosusceptometry (ACB). Finally, histopathology corroborates our PK and biodistribution results.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:17:17Z
2020-12-12T01:17:17Z
2020-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acs.molpharmaceut.9b01094
Molecular Pharmaceutics, v. 17, n. 3, p. 837-851, 2020.
1543-8392
1543-8384
http://hdl.handle.net/11449/198599
10.1021/acs.molpharmaceut.9b01094
2-s2.0-85081072742
url http://dx.doi.org/10.1021/acs.molpharmaceut.9b01094
http://hdl.handle.net/11449/198599
identifier_str_mv Molecular Pharmaceutics, v. 17, n. 3, p. 837-851, 2020.
1543-8392
1543-8384
10.1021/acs.molpharmaceut.9b01094
2-s2.0-85081072742
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Molecular Pharmaceutics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 837-851
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1799965534842781696