Buracos sônicos em superfícies esféricas

Detalhes bibliográficos
Autor(a) principal: Bernardes, Bruno [UNESP]
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/138366
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/11-04-2016/000855801.pdf
Resumo: In this dissertation we study the classical aspects of analogue models of General Relativity in condensed matter seeking mainly to create a new perception about semi-classical gravitational effects, such as Hawking radiation, in order to better comprehend them. We demonstrate that sound waves propagating in an ideal barotropic fluid with a non-homogeneous irrotacional flow, over a sphere 'S POT. 2' with radius r behave as a Klein-Gordon massless scalar field in a curved spacetime. Through this dissertation, we analyze several properties of this effective spacetime governing the propagation of sound, whose geometry is described by a Lorentzian metric that depends on the hydrodynamic variables of the flow such as the flow velocity, the density and the local speed of sound, always trying to establish correlations between classical concepts of fluid dynamics and purely relativistic concepts. Once a general analysis of these spacetimes is made, which we denominate acoustic spacetimes, we find solutions of the dynamic variables of the fluid, since they determine the acoustic geometry, capable of modeling effective spacetimes endowed with event horizons and singularities, creating therefore a dumb/deaf hole, i.e., an analogue of a black hole and white hole of the General Relativity. We further discuss some points of the causal structure of the acoustic spacetimes, so constructing a Carter-Penrose diagram of the dumb/deaf hole with the aim of bringing to evidence the possible null trajectories of this spacetime. Furthermore, we show that in the approximation of the acoustic geometry, also called eikonal approximation, the sound rays follow lightlike geodesics of the acoustic spacetime. Finally we calculate the scalar curvature of this spacetime verifying the presence of the non flat structure of the 'S POT. 2' sphere, over which the fluid moves
id UNSP_d63785292bc809f09d9d321e6a9c4618
oai_identifier_str oai:repositorio.unesp.br:11449/138366
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Buracos sônicos em superfícies esféricasRelatividade geral (Física)Materia condensadaGeneral relativity (Physics)In this dissertation we study the classical aspects of analogue models of General Relativity in condensed matter seeking mainly to create a new perception about semi-classical gravitational effects, such as Hawking radiation, in order to better comprehend them. We demonstrate that sound waves propagating in an ideal barotropic fluid with a non-homogeneous irrotacional flow, over a sphere 'S POT. 2' with radius r behave as a Klein-Gordon massless scalar field in a curved spacetime. Through this dissertation, we analyze several properties of this effective spacetime governing the propagation of sound, whose geometry is described by a Lorentzian metric that depends on the hydrodynamic variables of the flow such as the flow velocity, the density and the local speed of sound, always trying to establish correlations between classical concepts of fluid dynamics and purely relativistic concepts. Once a general analysis of these spacetimes is made, which we denominate acoustic spacetimes, we find solutions of the dynamic variables of the fluid, since they determine the acoustic geometry, capable of modeling effective spacetimes endowed with event horizons and singularities, creating therefore a dumb/deaf hole, i.e., an analogue of a black hole and white hole of the General Relativity. We further discuss some points of the causal structure of the acoustic spacetimes, so constructing a Carter-Penrose diagram of the dumb/deaf hole with the aim of bringing to evidence the possible null trajectories of this spacetime. Furthermore, we show that in the approximation of the acoustic geometry, also called eikonal approximation, the sound rays follow lightlike geodesics of the acoustic spacetime. Finally we calculate the scalar curvature of this spacetime verifying the presence of the non flat structure of the 'S POT. 2' sphere, over which the fluid movesNesta dissertação estudamos aspectos clássicos dos modelos análogos à Relatividade Geral em matéria condensada visando sobretudo criar uma nova percepção dos efeitos gravitacionais semi-clássicos, tais como a radiação Hawking, afim de melhor compreendê-los. Neste sentido, demonstramos que as ondas sonoras se propagando em um fluido ideal, barotrópico e irrotacional sobre uma esfera 'S POT. 2' de raio r se comportam como um campo escalar de Klein-Gordon não massivo em um espaço tempo curvo. Analisamos ao longo desta dissertação diversas propriedades deste espaço-tempo efetivo sentido pelo som, cuja geometria é descrita por uma métrica lorentziana dependente das variáveis hidrodinâmicas do fluxo, como a velocidade do fluido, sua densidade e a velocidade local do som, sempre buscando estabelecer correlações entre os conceitos clássicos da dinâmica dos fluidos e conceitos puramente relativísticos. Feita uma análise mais geral destes espaços-tempos, que denominamos de espaços-tempos acústicos, nos propomos a encontrar soluções das variáveis dinâmicas do fluido, uma vez que são elas que determinam a geometria acústica, capazes de modelar espaços-tempos efetivos dotados de horizontes de eventos e singularidades, criando portanto um buraco mudo/surdo, ou seja, um análogo de um buraco negro e de buraco branco da Relatividade Geral. Discutimos ainda alguns pontos da estrutura causal dos espaços-tempos acústicos construindo assim um diagrama de Carter-Penrose do buraco mudo/surdo com o intuito de evidenciar as possíveis trajetórias nulas deste espaço-tempo. Ademais, mostramos que na aproximação da acústica geométrica, ou também aproximação eikonal, os raios de som seguem geodésicas tipo luz do espaço-tempo acústico. Por fim, calculamos a curvatura escalar deste espaço-tempo verificando a presença...Universidade Estadual Paulista (Unesp)Matsas, George Emanuel Avraam [UNESP]Universidade Estadual Paulista (Unesp)Bernardes, Bruno [UNESP]2016-05-17T16:50:55Z2016-05-17T16:50:55Z2007-05-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisvi, 101 f. : il.application/pdfBERNARDES, Bruno. Buracos sônicos em superfícies esféricas. 2007. vi, 101 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Física Teórica, 2007.http://hdl.handle.net/11449/138366000855801http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/11-04-2016/000855801.pdf33015015001P78525680767393616Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2023-11-24T06:14:35Zoai:repositorio.unesp.br:11449/138366Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462023-11-24T06:14:35Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Buracos sônicos em superfícies esféricas
title Buracos sônicos em superfícies esféricas
spellingShingle Buracos sônicos em superfícies esféricas
Bernardes, Bruno [UNESP]
Relatividade geral (Física)
Materia condensada
General relativity (Physics)
title_short Buracos sônicos em superfícies esféricas
title_full Buracos sônicos em superfícies esféricas
title_fullStr Buracos sônicos em superfícies esféricas
title_full_unstemmed Buracos sônicos em superfícies esféricas
title_sort Buracos sônicos em superfícies esféricas
author Bernardes, Bruno [UNESP]
author_facet Bernardes, Bruno [UNESP]
author_role author
dc.contributor.none.fl_str_mv Matsas, George Emanuel Avraam [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bernardes, Bruno [UNESP]
dc.subject.por.fl_str_mv Relatividade geral (Física)
Materia condensada
General relativity (Physics)
topic Relatividade geral (Física)
Materia condensada
General relativity (Physics)
description In this dissertation we study the classical aspects of analogue models of General Relativity in condensed matter seeking mainly to create a new perception about semi-classical gravitational effects, such as Hawking radiation, in order to better comprehend them. We demonstrate that sound waves propagating in an ideal barotropic fluid with a non-homogeneous irrotacional flow, over a sphere 'S POT. 2' with radius r behave as a Klein-Gordon massless scalar field in a curved spacetime. Through this dissertation, we analyze several properties of this effective spacetime governing the propagation of sound, whose geometry is described by a Lorentzian metric that depends on the hydrodynamic variables of the flow such as the flow velocity, the density and the local speed of sound, always trying to establish correlations between classical concepts of fluid dynamics and purely relativistic concepts. Once a general analysis of these spacetimes is made, which we denominate acoustic spacetimes, we find solutions of the dynamic variables of the fluid, since they determine the acoustic geometry, capable of modeling effective spacetimes endowed with event horizons and singularities, creating therefore a dumb/deaf hole, i.e., an analogue of a black hole and white hole of the General Relativity. We further discuss some points of the causal structure of the acoustic spacetimes, so constructing a Carter-Penrose diagram of the dumb/deaf hole with the aim of bringing to evidence the possible null trajectories of this spacetime. Furthermore, we show that in the approximation of the acoustic geometry, also called eikonal approximation, the sound rays follow lightlike geodesics of the acoustic spacetime. Finally we calculate the scalar curvature of this spacetime verifying the presence of the non flat structure of the 'S POT. 2' sphere, over which the fluid moves
publishDate 2007
dc.date.none.fl_str_mv 2007-05-04
2016-05-17T16:50:55Z
2016-05-17T16:50:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BERNARDES, Bruno. Buracos sônicos em superfícies esféricas. 2007. vi, 101 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Física Teórica, 2007.
http://hdl.handle.net/11449/138366
000855801
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/11-04-2016/000855801.pdf
33015015001P7
8525680767393616
identifier_str_mv BERNARDES, Bruno. Buracos sônicos em superfícies esféricas. 2007. vi, 101 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Física Teórica, 2007.
000855801
33015015001P7
8525680767393616
url http://hdl.handle.net/11449/138366
http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/11-04-2016/000855801.pdf
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv vi, 101 f. : il.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803649803601575936