Bifurcations of the Riccati Quadratic Polynomial Differential Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1142/S0218127421500942 http://hdl.handle.net/11449/210375 |
Resumo: | In this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence. |
id |
UNSP_d67959b5c1034003c43f6e17d2f8f6d8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/210375 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Bifurcations of the Riccati Quadratic Polynomial Differential SystemsBifurcationtopological equivalenceRiccati systemPoincare compactificationdynamics at infinityIn this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence.Ministerio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grantAgencia de Gestio d'Ajuts Universitaris i de Recerca grantH2020 European Research Council grantCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, SpainUniv Estadual Campinas, IMECC, BR-13081970 Campinas, S Paulo, BrazilIBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, BrazilIBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, BrazilMinisterio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grant: MTM201677278-PAgencia de Gestio d'Ajuts Universitaris i de Recerca grant: 2017SGR1617H2020 European Research Council grant: MSCA-RISE-2017-777911: FP7-PEOPLE-2012-IRSES-316338World Scientific Publ Co Pte LtdUniv Autonoma BarcelonaUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Llibre, JaumeLopes, Bruno D.Silva, Paulo R. da2021-06-25T15:06:27Z2021-06-25T15:06:27Z2021-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13http://dx.doi.org/10.1142/S0218127421500942International Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021.0218-1274http://hdl.handle.net/11449/21037510.1142/S0218127421500942WOS:000655591700003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Bifurcation And Chaosinfo:eu-repo/semantics/openAccess2021-10-23T20:17:27Zoai:repositorio.unesp.br:11449/210375Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:15.063620Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems |
title |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems |
spellingShingle |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems Llibre, Jaume Bifurcation topological equivalence Riccati system Poincare compactification dynamics at infinity |
title_short |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems |
title_full |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems |
title_fullStr |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems |
title_full_unstemmed |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems |
title_sort |
Bifurcations of the Riccati Quadratic Polynomial Differential Systems |
author |
Llibre, Jaume |
author_facet |
Llibre, Jaume Lopes, Bruno D. Silva, Paulo R. da |
author_role |
author |
author2 |
Lopes, Bruno D. Silva, Paulo R. da |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Univ Autonoma Barcelona Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Llibre, Jaume Lopes, Bruno D. Silva, Paulo R. da |
dc.subject.por.fl_str_mv |
Bifurcation topological equivalence Riccati system Poincare compactification dynamics at infinity |
topic |
Bifurcation topological equivalence Riccati system Poincare compactification dynamics at infinity |
description |
In this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T15:06:27Z 2021-06-25T15:06:27Z 2021-05-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1142/S0218127421500942 International Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021. 0218-1274 http://hdl.handle.net/11449/210375 10.1142/S0218127421500942 WOS:000655591700003 |
url |
http://dx.doi.org/10.1142/S0218127421500942 http://hdl.handle.net/11449/210375 |
identifier_str_mv |
International Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021. 0218-1274 10.1142/S0218127421500942 WOS:000655591700003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal Of Bifurcation And Chaos |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 |
dc.publisher.none.fl_str_mv |
World Scientific Publ Co Pte Ltd |
publisher.none.fl_str_mv |
World Scientific Publ Co Pte Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128665708396544 |