Bifurcations of the Riccati Quadratic Polynomial Differential Systems

Detalhes bibliográficos
Autor(a) principal: Llibre, Jaume
Data de Publicação: 2021
Outros Autores: Lopes, Bruno D., Silva, Paulo R. da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1142/S0218127421500942
http://hdl.handle.net/11449/210375
Resumo: In this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence.
id UNSP_d67959b5c1034003c43f6e17d2f8f6d8
oai_identifier_str oai:repositorio.unesp.br:11449/210375
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bifurcations of the Riccati Quadratic Polynomial Differential SystemsBifurcationtopological equivalenceRiccati systemPoincare compactificationdynamics at infinityIn this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence.Ministerio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grantAgencia de Gestio d'Ajuts Universitaris i de Recerca grantH2020 European Research Council grantCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, SpainUniv Estadual Campinas, IMECC, BR-13081970 Campinas, S Paulo, BrazilIBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, BrazilIBILCE Univ Estadual Paulista, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sjr Preto, S Paulo, BrazilMinisterio de Economia, Industria y Competitividad, Agencia Estatal de Investigacion grant: MTM201677278-PAgencia de Gestio d'Ajuts Universitaris i de Recerca grant: 2017SGR1617H2020 European Research Council grant: MSCA-RISE-2017-777911: FP7-PEOPLE-2012-IRSES-316338World Scientific Publ Co Pte LtdUniv Autonoma BarcelonaUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Llibre, JaumeLopes, Bruno D.Silva, Paulo R. da2021-06-25T15:06:27Z2021-06-25T15:06:27Z2021-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13http://dx.doi.org/10.1142/S0218127421500942International Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021.0218-1274http://hdl.handle.net/11449/21037510.1142/S0218127421500942WOS:000655591700003Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Bifurcation And Chaosinfo:eu-repo/semantics/openAccess2021-10-23T20:17:27Zoai:repositorio.unesp.br:11449/210375Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:31:15.063620Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bifurcations of the Riccati Quadratic Polynomial Differential Systems
title Bifurcations of the Riccati Quadratic Polynomial Differential Systems
spellingShingle Bifurcations of the Riccati Quadratic Polynomial Differential Systems
Llibre, Jaume
Bifurcation
topological equivalence
Riccati system
Poincare compactification
dynamics at infinity
title_short Bifurcations of the Riccati Quadratic Polynomial Differential Systems
title_full Bifurcations of the Riccati Quadratic Polynomial Differential Systems
title_fullStr Bifurcations of the Riccati Quadratic Polynomial Differential Systems
title_full_unstemmed Bifurcations of the Riccati Quadratic Polynomial Differential Systems
title_sort Bifurcations of the Riccati Quadratic Polynomial Differential Systems
author Llibre, Jaume
author_facet Llibre, Jaume
Lopes, Bruno D.
Silva, Paulo R. da
author_role author
author2 Lopes, Bruno D.
Silva, Paulo R. da
author2_role author
author
dc.contributor.none.fl_str_mv Univ Autonoma Barcelona
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Llibre, Jaume
Lopes, Bruno D.
Silva, Paulo R. da
dc.subject.por.fl_str_mv Bifurcation
topological equivalence
Riccati system
Poincare compactification
dynamics at infinity
topic Bifurcation
topological equivalence
Riccati system
Poincare compactification
dynamics at infinity
description In this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system (x) over dot = alpha(2) (x), (y) over dot = ky(2) + beta(1)(x)y + -gamma(2)(x), with (x,y) is an element of R-2, gamma(2)(x) nonzero (otherwise the system is a Bernoulli differential system), k not equal 0 (otherwise the system is a Lienard differential system), beta(1)(x) a polynomial of degree at most 1, alpha(2)(x) and -gamma(2)(x) polynomials of degree at most 2, and the maximum of the degrees of alpha(2)(x) and ky(2) + beta(1)(x)y + gamma(2)(x) is 2. We give the complete description of the phase portraits in the Poincare disk (i.e. in the compactification of R-2 adding the circle S-1 of the infinity) modulo topological equivalence.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T15:06:27Z
2021-06-25T15:06:27Z
2021-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1142/S0218127421500942
International Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021.
0218-1274
http://hdl.handle.net/11449/210375
10.1142/S0218127421500942
WOS:000655591700003
url http://dx.doi.org/10.1142/S0218127421500942
http://hdl.handle.net/11449/210375
identifier_str_mv International Journal Of Bifurcation And Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 31, n. 06, 13 p., 2021.
0218-1274
10.1142/S0218127421500942
WOS:000655591700003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal Of Bifurcation And Chaos
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 13
dc.publisher.none.fl_str_mv World Scientific Publ Co Pte Ltd
publisher.none.fl_str_mv World Scientific Publ Co Pte Ltd
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128665708396544