On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6

Detalhes bibliográficos
Autor(a) principal: Biasi, Carlos
Data de Publicação: 2010
Outros Autores: Libardi, Alice K. M. [UNESP], de Mattos, Denise, dos Santos, Edivaldo L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/219632
Resumo: Let us consider M be a closed smooth connected m-manifold, N be a smooth n-manifold and f: M → N be a continuousmapwith codimension k = n - m > 0. In this paper, under certain conditions, we prove that f is homotopic to an immersion, in the following cases: m ≡ (14) and codimension k = m - 3; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 5; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 6. This work complements some results of Biasi et al. [1, 2], Koschorke [9] and of Li and Li [5]. © 2010 Pushpa Publishing House.
id UNSP_d7956597e77c8746ba2e34558dd06e04
oai_identifier_str oai:repositorio.unesp.br:11449/219632
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6ImmersionObstructionPaechter tableLet us consider M be a closed smooth connected m-manifold, N be a smooth n-manifold and f: M → N be a continuousmapwith codimension k = n - m > 0. In this paper, under certain conditions, we prove that f is homotopic to an immersion, in the following cases: m ≡ (14) and codimension k = m - 3; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 5; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 6. This work complements some results of Biasi et al. [1, 2], Koschorke [9] and of Li and Li [5]. © 2010 Pushpa Publishing House.ICMC-USP, Caixa Postal 668, 13560-970, São Carlos SPIGCE-UNESP, 13500-230 Rio Claro, SPUFSCar, Caixa Postal 676, 13565-905, São Carlos, SPIGCE-UNESP, 13500-230 Rio Claro, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Universidade Federal de São Carlos (UFSCar)Biasi, CarlosLibardi, Alice K. M. [UNESP]de Mattos, Denisedos Santos, Edivaldo L.2022-04-28T18:56:40Z2022-04-28T18:56:40Z2010-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article251-261JP Journal of Geometry and Topology, v. 10, n. 3, p. 251-261, 2010.0972-415Xhttp://hdl.handle.net/11449/2196322-s2.0-79951965187Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJP Journal of Geometry and Topologyinfo:eu-repo/semantics/openAccess2022-04-28T18:56:40Zoai:repositorio.unesp.br:11449/219632Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:30:29.424627Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
title On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
spellingShingle On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
Biasi, Carlos
Immersion
Obstruction
Paechter table
title_short On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
title_full On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
title_fullStr On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
title_full_unstemmed On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
title_sort On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
author Biasi, Carlos
author_facet Biasi, Carlos
Libardi, Alice K. M. [UNESP]
de Mattos, Denise
dos Santos, Edivaldo L.
author_role author
author2 Libardi, Alice K. M. [UNESP]
de Mattos, Denise
dos Santos, Edivaldo L.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Biasi, Carlos
Libardi, Alice K. M. [UNESP]
de Mattos, Denise
dos Santos, Edivaldo L.
dc.subject.por.fl_str_mv Immersion
Obstruction
Paechter table
topic Immersion
Obstruction
Paechter table
description Let us consider M be a closed smooth connected m-manifold, N be a smooth n-manifold and f: M → N be a continuousmapwith codimension k = n - m > 0. In this paper, under certain conditions, we prove that f is homotopic to an immersion, in the following cases: m ≡ (14) and codimension k = m - 3; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 5; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 6. This work complements some results of Biasi et al. [1, 2], Koschorke [9] and of Li and Li [5]. © 2010 Pushpa Publishing House.
publishDate 2010
dc.date.none.fl_str_mv 2010-11-01
2022-04-28T18:56:40Z
2022-04-28T18:56:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv JP Journal of Geometry and Topology, v. 10, n. 3, p. 251-261, 2010.
0972-415X
http://hdl.handle.net/11449/219632
2-s2.0-79951965187
identifier_str_mv JP Journal of Geometry and Topology, v. 10, n. 3, p. 251-261, 2010.
0972-415X
2-s2.0-79951965187
url http://hdl.handle.net/11449/219632
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv JP Journal of Geometry and Topology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 251-261
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128524310020096