On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/219632 |
Resumo: | Let us consider M be a closed smooth connected m-manifold, N be a smooth n-manifold and f: M → N be a continuousmapwith codimension k = n - m > 0. In this paper, under certain conditions, we prove that f is homotopic to an immersion, in the following cases: m ≡ (14) and codimension k = m - 3; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 5; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 6. This work complements some results of Biasi et al. [1, 2], Koschorke [9] and of Li and Li [5]. © 2010 Pushpa Publishing House. |
id |
UNSP_d7956597e77c8746ba2e34558dd06e04 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/219632 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6ImmersionObstructionPaechter tableLet us consider M be a closed smooth connected m-manifold, N be a smooth n-manifold and f: M → N be a continuousmapwith codimension k = n - m > 0. In this paper, under certain conditions, we prove that f is homotopic to an immersion, in the following cases: m ≡ (14) and codimension k = m - 3; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 5; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 6. This work complements some results of Biasi et al. [1, 2], Koschorke [9] and of Li and Li [5]. © 2010 Pushpa Publishing House.ICMC-USP, Caixa Postal 668, 13560-970, São Carlos SPIGCE-UNESP, 13500-230 Rio Claro, SPUFSCar, Caixa Postal 676, 13565-905, São Carlos, SPIGCE-UNESP, 13500-230 Rio Claro, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Universidade Federal de São Carlos (UFSCar)Biasi, CarlosLibardi, Alice K. M. [UNESP]de Mattos, Denisedos Santos, Edivaldo L.2022-04-28T18:56:40Z2022-04-28T18:56:40Z2010-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article251-261JP Journal of Geometry and Topology, v. 10, n. 3, p. 251-261, 2010.0972-415Xhttp://hdl.handle.net/11449/2196322-s2.0-79951965187Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJP Journal of Geometry and Topologyinfo:eu-repo/semantics/openAccess2022-04-28T18:56:40Zoai:repositorio.unesp.br:11449/219632Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:30:29.424627Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 |
title |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 |
spellingShingle |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 Biasi, Carlos Immersion Obstruction Paechter table |
title_short |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 |
title_full |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 |
title_fullStr |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 |
title_full_unstemmed |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 |
title_sort |
On codimensions k immersions of m-manifolds for k = m - 3, k = m - 5 and k = m - 6 |
author |
Biasi, Carlos |
author_facet |
Biasi, Carlos Libardi, Alice K. M. [UNESP] de Mattos, Denise dos Santos, Edivaldo L. |
author_role |
author |
author2 |
Libardi, Alice K. M. [UNESP] de Mattos, Denise dos Santos, Edivaldo L. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) Universidade Federal de São Carlos (UFSCar) |
dc.contributor.author.fl_str_mv |
Biasi, Carlos Libardi, Alice K. M. [UNESP] de Mattos, Denise dos Santos, Edivaldo L. |
dc.subject.por.fl_str_mv |
Immersion Obstruction Paechter table |
topic |
Immersion Obstruction Paechter table |
description |
Let us consider M be a closed smooth connected m-manifold, N be a smooth n-manifold and f: M → N be a continuousmapwith codimension k = n - m > 0. In this paper, under certain conditions, we prove that f is homotopic to an immersion, in the following cases: m ≡ (14) and codimension k = m - 3; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 5; m ≡ 2(4), m ≡ 3(8) and codimension k = m - 6. This work complements some results of Biasi et al. [1, 2], Koschorke [9] and of Li and Li [5]. © 2010 Pushpa Publishing House. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11-01 2022-04-28T18:56:40Z 2022-04-28T18:56:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
JP Journal of Geometry and Topology, v. 10, n. 3, p. 251-261, 2010. 0972-415X http://hdl.handle.net/11449/219632 2-s2.0-79951965187 |
identifier_str_mv |
JP Journal of Geometry and Topology, v. 10, n. 3, p. 251-261, 2010. 0972-415X 2-s2.0-79951965187 |
url |
http://hdl.handle.net/11449/219632 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
JP Journal of Geometry and Topology |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
251-261 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128524310020096 |