Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8

Detalhes bibliográficos
Autor(a) principal: Cardona, Wilmar [UNESP]
Data de Publicação: 2023
Outros Autores: Sabogal, M. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1475-7516/2023/02/045
http://hdl.handle.net/11449/248416
Resumo: Interesting discrepancies in cosmological parameters are challenging the success of the ΛCDM model. Direct measurements of the Hubble constant H 0 using Cepheid variables and supernovae turn out to be higher than inferred from the Cosmic Microwave Background (CMB). Weak galaxy lensing surveys consistently report values of the strength of matter clustering σ8 lower than values derived from the CMB in the context of ΛCDM. In this paper we address these discrepancies in cosmological parameters by considering Dark Energy (DE) as a fluid with evolving equation of state wde(z), constant sound speed squared ĉs2, and vanishing anisotropic stress σ. Our wde(z) is derived from the Holographic Principle and can consecutively exhibit radiation-like, matter-like, and DE-like behaviour, thus affecting the sound horizon and the comoving angular diameter distance, hence H0. Here we show DE sound speed plays a part in the matter clustering behaviour through its effect on the evolution of the gravitational potential. We compute cosmological constraints using several data set combinations including primary CMB, CMB lensing, redshift-space-distortions, local distance-ladder, supernovae, and baryon acoustic oscillations. In our analysis we marginalise over ĉs2 and find ĉs2 = 1 is excluded at ≳ 3σ. For our baseline result including the whole data set we found H0 and σ8 in good agreement (within ≈ 2σ) with low redshift probes. Our constraint for the baryon energy density ωb is however in ≈ 3σ tension with BBN constraints. We conclude evolving DE also having non-standard clustering properties [e.g., ĉs2(z,k)] might be relevant for the solution of current discrepancies in cosmological parameters.
id UNSP_d9073320f2d320aacca6908b18bfb268
oai_identifier_str oai:repositorio.unesp.br:11449/248416
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8cosmological parameters from CMBRcosmological parameters from LSSdark energy theoryInteresting discrepancies in cosmological parameters are challenging the success of the ΛCDM model. Direct measurements of the Hubble constant H 0 using Cepheid variables and supernovae turn out to be higher than inferred from the Cosmic Microwave Background (CMB). Weak galaxy lensing surveys consistently report values of the strength of matter clustering σ8 lower than values derived from the CMB in the context of ΛCDM. In this paper we address these discrepancies in cosmological parameters by considering Dark Energy (DE) as a fluid with evolving equation of state wde(z), constant sound speed squared ĉs2, and vanishing anisotropic stress σ. Our wde(z) is derived from the Holographic Principle and can consecutively exhibit radiation-like, matter-like, and DE-like behaviour, thus affecting the sound horizon and the comoving angular diameter distance, hence H0. Here we show DE sound speed plays a part in the matter clustering behaviour through its effect on the evolution of the gravitational potential. We compute cosmological constraints using several data set combinations including primary CMB, CMB lensing, redshift-space-distortions, local distance-ladder, supernovae, and baryon acoustic oscillations. In our analysis we marginalise over ĉs2 and find ĉs2 = 1 is excluded at ≳ 3σ. For our baseline result including the whole data set we found H0 and σ8 in good agreement (within ≈ 2σ) with low redshift probes. Our constraint for the baryon energy density ωb is however in ≈ 3σ tension with BBN constraints. We conclude evolving DE also having non-standard clustering properties [e.g., ĉs2(z,k)] might be relevant for the solution of current discrepancies in cosmological parameters.ICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual PaulistaPrograma de Física Universidad del Atlántico, Carrera 30 Número 8-49, AtlánticoICTP South American Institute for Fundamental Research Instituto de Física Teórica Universidade Estadual PaulistaUniversidade Estadual Paulista (UNESP)Universidad del AtlánticoCardona, Wilmar [UNESP]Sabogal, M. A.2023-07-29T13:43:28Z2023-07-29T13:43:28Z2023-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1475-7516/2023/02/045Journal of Cosmology and Astroparticle Physics, v. 2023, n. 2, 2023.1475-7516http://hdl.handle.net/11449/24841610.1088/1475-7516/2023/02/0452-s2.0-85148861165Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Cosmology and Astroparticle Physicsinfo:eu-repo/semantics/openAccess2023-07-29T13:43:28Zoai:repositorio.unesp.br:11449/248416Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:03:06.019676Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
title Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
spellingShingle Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
Cardona, Wilmar [UNESP]
cosmological parameters from CMBR
cosmological parameters from LSS
dark energy theory
title_short Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
title_full Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
title_fullStr Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
title_full_unstemmed Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
title_sort Holographic energy density, dark energy sound speed, and tensions in cosmological parameters: H0 and S8
author Cardona, Wilmar [UNESP]
author_facet Cardona, Wilmar [UNESP]
Sabogal, M. A.
author_role author
author2 Sabogal, M. A.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidad del Atlántico
dc.contributor.author.fl_str_mv Cardona, Wilmar [UNESP]
Sabogal, M. A.
dc.subject.por.fl_str_mv cosmological parameters from CMBR
cosmological parameters from LSS
dark energy theory
topic cosmological parameters from CMBR
cosmological parameters from LSS
dark energy theory
description Interesting discrepancies in cosmological parameters are challenging the success of the ΛCDM model. Direct measurements of the Hubble constant H 0 using Cepheid variables and supernovae turn out to be higher than inferred from the Cosmic Microwave Background (CMB). Weak galaxy lensing surveys consistently report values of the strength of matter clustering σ8 lower than values derived from the CMB in the context of ΛCDM. In this paper we address these discrepancies in cosmological parameters by considering Dark Energy (DE) as a fluid with evolving equation of state wde(z), constant sound speed squared ĉs2, and vanishing anisotropic stress σ. Our wde(z) is derived from the Holographic Principle and can consecutively exhibit radiation-like, matter-like, and DE-like behaviour, thus affecting the sound horizon and the comoving angular diameter distance, hence H0. Here we show DE sound speed plays a part in the matter clustering behaviour through its effect on the evolution of the gravitational potential. We compute cosmological constraints using several data set combinations including primary CMB, CMB lensing, redshift-space-distortions, local distance-ladder, supernovae, and baryon acoustic oscillations. In our analysis we marginalise over ĉs2 and find ĉs2 = 1 is excluded at ≳ 3σ. For our baseline result including the whole data set we found H0 and σ8 in good agreement (within ≈ 2σ) with low redshift probes. Our constraint for the baryon energy density ωb is however in ≈ 3σ tension with BBN constraints. We conclude evolving DE also having non-standard clustering properties [e.g., ĉs2(z,k)] might be relevant for the solution of current discrepancies in cosmological parameters.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:43:28Z
2023-07-29T13:43:28Z
2023-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1475-7516/2023/02/045
Journal of Cosmology and Astroparticle Physics, v. 2023, n. 2, 2023.
1475-7516
http://hdl.handle.net/11449/248416
10.1088/1475-7516/2023/02/045
2-s2.0-85148861165
url http://dx.doi.org/10.1088/1475-7516/2023/02/045
http://hdl.handle.net/11449/248416
identifier_str_mv Journal of Cosmology and Astroparticle Physics, v. 2023, n. 2, 2023.
1475-7516
10.1088/1475-7516/2023/02/045
2-s2.0-85148861165
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Cosmology and Astroparticle Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128888835932160