GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3389/fgene.2021.704778 http://hdl.handle.net/11449/229560 |
Resumo: | Overexpression of growth hormone (GH) in gh-transgenic zebrafish of a highly studied lineage F0104 has earlier been reported to cause increased muscle growth. In addition to this, GH affects a broad range of cellular processes in transgenic fish, such as morphology, physiology, and behavior. Reports show changes such as decreased sperm quality and reduced reproductive performance in transgenic males. It is hypothesized that microRNAs are directly involved in the regulation of fertility potential during spermatogenesis. The primary aim of our study was to verify whether gh overexpression disturbs the sperm miRNA profile and influences the sperm quality in transgenic zebrafish. We report a significant increase in body weight of gh-transgenic males along with associated reduced sperm motility and other kinetic parameters in comparison to the non-transgenic group. MicroRNA transcriptome sequencing of gh-transgenic zebrafish sperms revealed expressions of 186 miRNAs, among which six miRNA were up-regulated (miR-146b, miR-200a-5p, miR-146a, miR-726, miR-184, and miR-738) and sixteen were down-regulated (miR-19d-3p, miR-126a-5p, miR-126b-5p, miR-22a-5p, miR-16c-5p, miR-20a-5p, miR-126b-3p, miR-107a-3p, miR-93, miR-2189, miR-202–5p, miR-221–3p, miR-125a, miR-125b-5p, miR-126a-3p, and miR-30c-5p) in comparison to non-transgenic zebrafish. Some of the dysregulated miRNAs were previously reported to be related to abnormalities in sperm quality and reduced reproduction ability in other species. In this study, an average of 134 differentially expressed miRNAs-targeted genes were predicted using the in silico approach. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the genes of affected pathways were primarily related to spermatogenesis, sperm motility, and cell apoptosis. Our results suggested that excess GH caused a detrimental effect on sperm microRNAome, consequently reducing the sperm quality and reproductive potential of zebrafish males. |
id |
UNSP_d978bf7ad76c932f6eeaa60ae7dd08f8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/229560 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic ZebrafishDanio rerioepigeneticmiRNA-seqnon-coding RNAssperm motilitytransgenic fishOverexpression of growth hormone (GH) in gh-transgenic zebrafish of a highly studied lineage F0104 has earlier been reported to cause increased muscle growth. In addition to this, GH affects a broad range of cellular processes in transgenic fish, such as morphology, physiology, and behavior. Reports show changes such as decreased sperm quality and reduced reproductive performance in transgenic males. It is hypothesized that microRNAs are directly involved in the regulation of fertility potential during spermatogenesis. The primary aim of our study was to verify whether gh overexpression disturbs the sperm miRNA profile and influences the sperm quality in transgenic zebrafish. We report a significant increase in body weight of gh-transgenic males along with associated reduced sperm motility and other kinetic parameters in comparison to the non-transgenic group. MicroRNA transcriptome sequencing of gh-transgenic zebrafish sperms revealed expressions of 186 miRNAs, among which six miRNA were up-regulated (miR-146b, miR-200a-5p, miR-146a, miR-726, miR-184, and miR-738) and sixteen were down-regulated (miR-19d-3p, miR-126a-5p, miR-126b-5p, miR-22a-5p, miR-16c-5p, miR-20a-5p, miR-126b-3p, miR-107a-3p, miR-93, miR-2189, miR-202–5p, miR-221–3p, miR-125a, miR-125b-5p, miR-126a-3p, and miR-30c-5p) in comparison to non-transgenic zebrafish. Some of the dysregulated miRNAs were previously reported to be related to abnormalities in sperm quality and reduced reproduction ability in other species. In this study, an average of 134 differentially expressed miRNAs-targeted genes were predicted using the in silico approach. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the genes of affected pathways were primarily related to spermatogenesis, sperm motility, and cell apoptosis. Our results suggested that excess GH caused a detrimental effect on sperm microRNAome, consequently reducing the sperm quality and reproductive potential of zebrafish males.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Laboratório de Genômica Estrutural Programa de Pós-Graduação em Biotecnologia Centro de Desenvolvimento Tecnológico Universidade Federal de PelotasLaboratório de Biologia Molecular Instituto de Ciências Biológicas Universidade Federal do Rio GrandeFaculdade de Nutrição Universidade Federal de PelotasPrograma de Pós-Graduação em Veterinária Faculdade de Veterinária Universidade Federal de PelotasUnidad de Biología Molecular Institut PasteurLaboratório Genômica e Evolução Molecular Departamento de Genética Instituto de Biociências de Botucatu Universidade Estadual Paulista (UNESP)Laboratório Genômica e Evolução Molecular Departamento de Genética Instituto de Biociências de Botucatu Universidade Estadual Paulista (UNESP)CAPES: AUXPE #2537/2018FAPESP: FAPERGS FAPESP #19/2551-0000953-3Universidade Federal de PelotasUniversidade Federal do Rio GrandeInstitut PasteurUniversidade Estadual Paulista (UNESP)Domingues, William B.Silveira, Tony L. R.Nunes, Leandro S.Blodorn, Eduardo B.Schneider, AugustoCorcine, Carine D.Varela Junior, Antônio S.Acosta, Izani B.Kütter, Mateus T.Greif, GonzaloRobello, CarlosPinhal, Danillo [UNESP]Marins, Luís F.Campos, Vinicius F.2022-04-29T08:33:13Z2022-04-29T08:33:13Z2021-09-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3389/fgene.2021.704778Frontiers in Genetics, v. 12.1664-8021http://hdl.handle.net/11449/22956010.3389/fgene.2021.7047782-s2.0-85115357322Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFrontiers in Geneticsinfo:eu-repo/semantics/openAccess2022-04-29T08:33:13Zoai:repositorio.unesp.br:11449/229560Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:08:39.495928Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish |
title |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish |
spellingShingle |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish Domingues, William B. Danio rerio epigenetic miRNA-seq non-coding RNAs sperm motility transgenic fish |
title_short |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish |
title_full |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish |
title_fullStr |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish |
title_full_unstemmed |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish |
title_sort |
GH Overexpression Alters Spermatic Cells MicroRNAome Profile in Transgenic Zebrafish |
author |
Domingues, William B. |
author_facet |
Domingues, William B. Silveira, Tony L. R. Nunes, Leandro S. Blodorn, Eduardo B. Schneider, Augusto Corcine, Carine D. Varela Junior, Antônio S. Acosta, Izani B. Kütter, Mateus T. Greif, Gonzalo Robello, Carlos Pinhal, Danillo [UNESP] Marins, Luís F. Campos, Vinicius F. |
author_role |
author |
author2 |
Silveira, Tony L. R. Nunes, Leandro S. Blodorn, Eduardo B. Schneider, Augusto Corcine, Carine D. Varela Junior, Antônio S. Acosta, Izani B. Kütter, Mateus T. Greif, Gonzalo Robello, Carlos Pinhal, Danillo [UNESP] Marins, Luís F. Campos, Vinicius F. |
author2_role |
author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Pelotas Universidade Federal do Rio Grande Institut Pasteur Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Domingues, William B. Silveira, Tony L. R. Nunes, Leandro S. Blodorn, Eduardo B. Schneider, Augusto Corcine, Carine D. Varela Junior, Antônio S. Acosta, Izani B. Kütter, Mateus T. Greif, Gonzalo Robello, Carlos Pinhal, Danillo [UNESP] Marins, Luís F. Campos, Vinicius F. |
dc.subject.por.fl_str_mv |
Danio rerio epigenetic miRNA-seq non-coding RNAs sperm motility transgenic fish |
topic |
Danio rerio epigenetic miRNA-seq non-coding RNAs sperm motility transgenic fish |
description |
Overexpression of growth hormone (GH) in gh-transgenic zebrafish of a highly studied lineage F0104 has earlier been reported to cause increased muscle growth. In addition to this, GH affects a broad range of cellular processes in transgenic fish, such as morphology, physiology, and behavior. Reports show changes such as decreased sperm quality and reduced reproductive performance in transgenic males. It is hypothesized that microRNAs are directly involved in the regulation of fertility potential during spermatogenesis. The primary aim of our study was to verify whether gh overexpression disturbs the sperm miRNA profile and influences the sperm quality in transgenic zebrafish. We report a significant increase in body weight of gh-transgenic males along with associated reduced sperm motility and other kinetic parameters in comparison to the non-transgenic group. MicroRNA transcriptome sequencing of gh-transgenic zebrafish sperms revealed expressions of 186 miRNAs, among which six miRNA were up-regulated (miR-146b, miR-200a-5p, miR-146a, miR-726, miR-184, and miR-738) and sixteen were down-regulated (miR-19d-3p, miR-126a-5p, miR-126b-5p, miR-22a-5p, miR-16c-5p, miR-20a-5p, miR-126b-3p, miR-107a-3p, miR-93, miR-2189, miR-202–5p, miR-221–3p, miR-125a, miR-125b-5p, miR-126a-3p, and miR-30c-5p) in comparison to non-transgenic zebrafish. Some of the dysregulated miRNAs were previously reported to be related to abnormalities in sperm quality and reduced reproduction ability in other species. In this study, an average of 134 differentially expressed miRNAs-targeted genes were predicted using the in silico approach. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that the genes of affected pathways were primarily related to spermatogenesis, sperm motility, and cell apoptosis. Our results suggested that excess GH caused a detrimental effect on sperm microRNAome, consequently reducing the sperm quality and reproductive potential of zebrafish males. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-08 2022-04-29T08:33:13Z 2022-04-29T08:33:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3389/fgene.2021.704778 Frontiers in Genetics, v. 12. 1664-8021 http://hdl.handle.net/11449/229560 10.3389/fgene.2021.704778 2-s2.0-85115357322 |
url |
http://dx.doi.org/10.3389/fgene.2021.704778 http://hdl.handle.net/11449/229560 |
identifier_str_mv |
Frontiers in Genetics, v. 12. 1664-8021 10.3389/fgene.2021.704778 2-s2.0-85115357322 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Frontiers in Genetics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129025017643008 |