Chaotic diffusion for particles moving in a time dependent potential well

Detalhes bibliográficos
Autor(a) principal: Leonel, Edson D. [UNESP]
Data de Publicação: 2020
Outros Autores: Kuwana, Célia Mayumi [UNESP], Yoshida, Makoto [UNESP], de Oliveira, Juliano Antonio [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.physleta.2020.126737
http://hdl.handle.net/11449/201966
Resumo: The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.
id UNSP_d99514f0320a8d4445dab0b67eb45612
oai_identifier_str oai:repositorio.unesp.br:11449/201966
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Chaotic diffusion for particles moving in a time dependent potential wellChaosDiffusionScaling lawsThe chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Estadual Paulista (UNESP) Departamento de Física, Av. 24A, 1515 – Bela VistaUniversidade Estadual Paulista (UNESP), Campus de São João da Boa Vista, Av. Profa. Isette Corrêa Fontão, 505Universidade Estadual Paulista (UNESP) Departamento de Física, Av. 24A, 1515 – Bela VistaUniversidade Estadual Paulista (UNESP), Campus de São João da Boa Vista, Av. Profa. Isette Corrêa Fontão, 505FAPESP: 2018/14685-9FAPESP: 2019/14038-6CNPq: 301318/2019-0CNPq: 303242/2018-3CNPq: 421254/2016-5Universidade Estadual Paulista (Unesp)Leonel, Edson D. [UNESP]Kuwana, Célia Mayumi [UNESP]Yoshida, Makoto [UNESP]de Oliveira, Juliano Antonio [UNESP]2020-12-12T02:46:25Z2020-12-12T02:46:25Z2020-10-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.physleta.2020.126737Physics Letters, Section A: General, Atomic and Solid State Physics, v. 384, n. 28, 2020.0375-9601http://hdl.handle.net/11449/20196610.1016/j.physleta.2020.1267372-s2.0-85088395430Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysics Letters, Section A: General, Atomic and Solid State Physicsinfo:eu-repo/semantics/openAccess2021-10-23T03:22:09Zoai:repositorio.unesp.br:11449/201966Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:14:44.558656Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Chaotic diffusion for particles moving in a time dependent potential well
title Chaotic diffusion for particles moving in a time dependent potential well
spellingShingle Chaotic diffusion for particles moving in a time dependent potential well
Leonel, Edson D. [UNESP]
Chaos
Diffusion
Scaling laws
title_short Chaotic diffusion for particles moving in a time dependent potential well
title_full Chaotic diffusion for particles moving in a time dependent potential well
title_fullStr Chaotic diffusion for particles moving in a time dependent potential well
title_full_unstemmed Chaotic diffusion for particles moving in a time dependent potential well
title_sort Chaotic diffusion for particles moving in a time dependent potential well
author Leonel, Edson D. [UNESP]
author_facet Leonel, Edson D. [UNESP]
Kuwana, Célia Mayumi [UNESP]
Yoshida, Makoto [UNESP]
de Oliveira, Juliano Antonio [UNESP]
author_role author
author2 Kuwana, Célia Mayumi [UNESP]
Yoshida, Makoto [UNESP]
de Oliveira, Juliano Antonio [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Leonel, Edson D. [UNESP]
Kuwana, Célia Mayumi [UNESP]
Yoshida, Makoto [UNESP]
de Oliveira, Juliano Antonio [UNESP]
dc.subject.por.fl_str_mv Chaos
Diffusion
Scaling laws
topic Chaos
Diffusion
Scaling laws
description The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and; (ii) by the solution of the diffusion equation. The dynamic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:46:25Z
2020-12-12T02:46:25Z
2020-10-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physleta.2020.126737
Physics Letters, Section A: General, Atomic and Solid State Physics, v. 384, n. 28, 2020.
0375-9601
http://hdl.handle.net/11449/201966
10.1016/j.physleta.2020.126737
2-s2.0-85088395430
url http://dx.doi.org/10.1016/j.physleta.2020.126737
http://hdl.handle.net/11449/201966
identifier_str_mv Physics Letters, Section A: General, Atomic and Solid State Physics, v. 384, n. 28, 2020.
0375-9601
10.1016/j.physleta.2020.126737
2-s2.0-85088395430
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physics Letters, Section A: General, Atomic and Solid State Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129040440098816