Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/153370 |
Resumo: | Carbon supported PdAu nanoparticles with different Au contents (20-50% in atoms) were synthesized using a procedure carried out in a liquid two-phase system. As-prepared materials presented similar average particle diameter (~3nm) with narrow distribution over the carbon support, as shown by Transmission Electronic Microscopy (TEM). The combined data from X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) suggest that nanoparticles had Pd-enriched surfaces and Au-rich interiors. Cyclic Voltammetry (CVs) studies in H2SO4 further reinforced these findings, confirming that the nanoparticle surfaces were enriched with Pd. Moreover, XPS results show that increasing the Au content of PdAu alloys leads to varying amounts of surface-like and bulk-like Pd oxide, with a significant increase of metallic Pd. This result is consistent with data of X-ray Absorption Spectroscopy (XAS) around Pd L3 edge, which revealed that Au promotes an increase in the electronic occupancy of the Pd 4d band. Therefore, this whole set of characterizations suggests that the presence of Au in PdAu nanoalloys decreases the Pd affinity for oxygen, giving Pd a more noble-like character. In addition, the influence of ligand and ensemble effects on electrochemical surface processes, such as oxide formation/reduction, CO oxidation and hydrogen adsorption were also investigated. This was also a necessary step in order to determine the best technique to measure the Electrochemical Active Area (EAA) of Pd. The, electrocatalytic activity toward the Oxygen Reduction Reaction (ORR) was evaluated using a rotating ring-disk electrode in O2 saturated H2SO4 and KOH solutions. On acidic medium, increasing the Au content on PdAu nanoparticles lead to a consistent decrease in catalyst performance and a considerable increase in H2O2 production, suggesting a 2-electron pathway for the ORR. In contrast, on alkaline solution the PdAu 50:50 presented by far the best catalytic activity and the lowest production of H2O2, suggesting a 4-electron pathway for the ORR. Accelerated stability tests were also performed in both electrolytes. On acidic medium, the presence of Au seems to increase the rate of Pd dissolution. That was also observed in alkaline medium. In summary, in acidic medium, as ORR catalysts, PdAu nanoparticles were overall worse than pure Pd. However, in alkaline medium, the PdAu materials were not only better catalyst than pure Pd, but also the PdAu 50:50 surpassed Pt, proving to be a promising catalyst for use in alkaline fuel cells. |
id |
UNSP_dad2f1f6c631f44926ed9ab4a741d684 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/153370 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reactionPropriedades eletrônicas e estruturais de nanopartículas de PdAu/C e seu comportamento catalítico para a redução eletroquímica do oxigênioBimetalic catalystsPalladiumGoldOxygen reduction reationElectrocatalysisNanoparticlesFuel cellCatalisadores bimetálicosPaládioOuroReação de redução de oxigênioEletrocatáliseNanopartículasCélula de combustívelCarbon supported PdAu nanoparticles with different Au contents (20-50% in atoms) were synthesized using a procedure carried out in a liquid two-phase system. As-prepared materials presented similar average particle diameter (~3nm) with narrow distribution over the carbon support, as shown by Transmission Electronic Microscopy (TEM). The combined data from X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) suggest that nanoparticles had Pd-enriched surfaces and Au-rich interiors. Cyclic Voltammetry (CVs) studies in H2SO4 further reinforced these findings, confirming that the nanoparticle surfaces were enriched with Pd. Moreover, XPS results show that increasing the Au content of PdAu alloys leads to varying amounts of surface-like and bulk-like Pd oxide, with a significant increase of metallic Pd. This result is consistent with data of X-ray Absorption Spectroscopy (XAS) around Pd L3 edge, which revealed that Au promotes an increase in the electronic occupancy of the Pd 4d band. Therefore, this whole set of characterizations suggests that the presence of Au in PdAu nanoalloys decreases the Pd affinity for oxygen, giving Pd a more noble-like character. In addition, the influence of ligand and ensemble effects on electrochemical surface processes, such as oxide formation/reduction, CO oxidation and hydrogen adsorption were also investigated. This was also a necessary step in order to determine the best technique to measure the Electrochemical Active Area (EAA) of Pd. The, electrocatalytic activity toward the Oxygen Reduction Reaction (ORR) was evaluated using a rotating ring-disk electrode in O2 saturated H2SO4 and KOH solutions. On acidic medium, increasing the Au content on PdAu nanoparticles lead to a consistent decrease in catalyst performance and a considerable increase in H2O2 production, suggesting a 2-electron pathway for the ORR. In contrast, on alkaline solution the PdAu 50:50 presented by far the best catalytic activity and the lowest production of H2O2, suggesting a 4-electron pathway for the ORR. Accelerated stability tests were also performed in both electrolytes. On acidic medium, the presence of Au seems to increase the rate of Pd dissolution. That was also observed in alkaline medium. In summary, in acidic medium, as ORR catalysts, PdAu nanoparticles were overall worse than pure Pd. However, in alkaline medium, the PdAu materials were not only better catalyst than pure Pd, but also the PdAu 50:50 surpassed Pt, proving to be a promising catalyst for use in alkaline fuel cells.Nanopartículas de PdAu suportadas em carbono com diferentes frações de Au (20-50% em átomos) foram sintetizadas em um sistema líquido de duas fases. As nanopartículas preparadas apresentaram diâmetro médio próximo a 3 nm, com uma distribuição homogênea sobre o suporte de carbono, o que foi demonstrado por microscopia eletrônica de transmissão (TEM). O conjunto dos dados coletados por difração de raios X (XRD) e por espetroscopia de fotoelétrons excitados por raios X (XPS) demonstrou que o interior das nanopartículas é enriquecido por Au, enquanto a superfície é mais rica em Pd. A análise por XPS também demonstrou que o aumento da fração de Au nas ligas de PdAu leva a uma variação na fração de diferentes espécies de óxidos de Pd e um aumento na quantidade total de Pd metálico. Este resultado é consistente com aquele obtido por espectroscopia de absorção de raios-X (XAS), realizada na borda L3 do Pd, a qual revelou que o Au promove um preenchimento eletrônico na banda 4d do Pd. Ou seja, a presença do Au parece diminuir a afinidade do Pd pelo oxigênio. Ademais, foram estudados a influência de efeitos eletrônicos e do arranjo superficial de átomos sobre os processos eletroquímicos de formação/redução de óxidos, oxidação de CO adsorvido e adsorção de hidrogênio. Estes estudos também permitiram a determinação da área eletroquímica ativa de Pd. Por meio de todas estas caracterizações foi possível traçar correlações entre a composição no cerne das nanopartículas de PdAu e suas propriedades superficiais. A atividade catalítica para a reação de redução do oxigênio (RRO) foi avaliada utilizando-se a técnica do eletrodo de disco-anel rotatório, em soluções de H2SO4 e KOH saturadas com O2. Em meio ácido, o aumento da fração de Au levou a uma consistente queda de atividade e a um aumento na produção de H2O2, indicando predominância do mecanismo via 2 elétrons para a RRO. Em contraste, em meio alcalino o aumento da fração de Au levou a um significativo aumento na atividade catalítica, sendo predominante o mecanismo via 4 elétrons. Testes de estabilidade também foram realizados. Em meio ácido, a presença do Au parece aumentar ainda mais a taxa de dissolução do Pd. Isto também foi observado em meio alcalino, porém em menor intensidade. Em resumo, em meio ácido, os materiais de PdAu tiveram desempenho inferior ao Pd. Porém, em meio alcalino os materiais de PdAu não só tiveram um melhor desempenho que o Pd puro, mas o PdAu 50:50 chegou a ultrapassar a atividade catalítica da Pt, provando-se ser um catalisador promissor para aplicações em células a combustível alcalinas.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 142497/2013-4Universidade Estadual Paulista (Unesp)Villullas, Hebe de las Mercedes [UNESP]Universidade Estadual Paulista (Unesp)Gallo, Irã Borges Coutinho2018-04-04T17:35:34Z2018-04-04T17:35:34Z2018-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/15337000089927333004030072P8enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2023-11-23T06:10:46Zoai:repositorio.unesp.br:11449/153370Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:29:00.441749Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction Propriedades eletrônicas e estruturais de nanopartículas de PdAu/C e seu comportamento catalítico para a redução eletroquímica do oxigênio |
title |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction |
spellingShingle |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction Gallo, Irã Borges Coutinho Bimetalic catalysts Palladium Gold Oxygen reduction reation Electrocatalysis Nanoparticles Fuel cell Catalisadores bimetálicos Paládio Ouro Reação de redução de oxigênio Eletrocatálise Nanopartículas Célula de combustível |
title_short |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction |
title_full |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction |
title_fullStr |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction |
title_full_unstemmed |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction |
title_sort |
Surface structure and electronic properties of carbon supported PdAu nanoparticles and their catalytic behavior toward the oxygen reduction reaction |
author |
Gallo, Irã Borges Coutinho |
author_facet |
Gallo, Irã Borges Coutinho |
author_role |
author |
dc.contributor.none.fl_str_mv |
Villullas, Hebe de las Mercedes [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Gallo, Irã Borges Coutinho |
dc.subject.por.fl_str_mv |
Bimetalic catalysts Palladium Gold Oxygen reduction reation Electrocatalysis Nanoparticles Fuel cell Catalisadores bimetálicos Paládio Ouro Reação de redução de oxigênio Eletrocatálise Nanopartículas Célula de combustível |
topic |
Bimetalic catalysts Palladium Gold Oxygen reduction reation Electrocatalysis Nanoparticles Fuel cell Catalisadores bimetálicos Paládio Ouro Reação de redução de oxigênio Eletrocatálise Nanopartículas Célula de combustível |
description |
Carbon supported PdAu nanoparticles with different Au contents (20-50% in atoms) were synthesized using a procedure carried out in a liquid two-phase system. As-prepared materials presented similar average particle diameter (~3nm) with narrow distribution over the carbon support, as shown by Transmission Electronic Microscopy (TEM). The combined data from X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) suggest that nanoparticles had Pd-enriched surfaces and Au-rich interiors. Cyclic Voltammetry (CVs) studies in H2SO4 further reinforced these findings, confirming that the nanoparticle surfaces were enriched with Pd. Moreover, XPS results show that increasing the Au content of PdAu alloys leads to varying amounts of surface-like and bulk-like Pd oxide, with a significant increase of metallic Pd. This result is consistent with data of X-ray Absorption Spectroscopy (XAS) around Pd L3 edge, which revealed that Au promotes an increase in the electronic occupancy of the Pd 4d band. Therefore, this whole set of characterizations suggests that the presence of Au in PdAu nanoalloys decreases the Pd affinity for oxygen, giving Pd a more noble-like character. In addition, the influence of ligand and ensemble effects on electrochemical surface processes, such as oxide formation/reduction, CO oxidation and hydrogen adsorption were also investigated. This was also a necessary step in order to determine the best technique to measure the Electrochemical Active Area (EAA) of Pd. The, electrocatalytic activity toward the Oxygen Reduction Reaction (ORR) was evaluated using a rotating ring-disk electrode in O2 saturated H2SO4 and KOH solutions. On acidic medium, increasing the Au content on PdAu nanoparticles lead to a consistent decrease in catalyst performance and a considerable increase in H2O2 production, suggesting a 2-electron pathway for the ORR. In contrast, on alkaline solution the PdAu 50:50 presented by far the best catalytic activity and the lowest production of H2O2, suggesting a 4-electron pathway for the ORR. Accelerated stability tests were also performed in both electrolytes. On acidic medium, the presence of Au seems to increase the rate of Pd dissolution. That was also observed in alkaline medium. In summary, in acidic medium, as ORR catalysts, PdAu nanoparticles were overall worse than pure Pd. However, in alkaline medium, the PdAu materials were not only better catalyst than pure Pd, but also the PdAu 50:50 surpassed Pt, proving to be a promising catalyst for use in alkaline fuel cells. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-04T17:35:34Z 2018-04-04T17:35:34Z 2018-03-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/153370 000899273 33004030072P8 |
url |
http://hdl.handle.net/11449/153370 |
identifier_str_mv |
000899273 33004030072P8 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128937429041152 |