Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields

Detalhes bibliográficos
Autor(a) principal: Sepulchro, Ana Gabriela Veiga
Data de Publicação: 2020
Outros Autores: de Barros, Henrique Lins, de Mota, Henrique Oliveira Leiras, Berbereia, Karen Shiroiva, Huamani, Katterine Patricia Taipe, Lopes, Lis Carneiro da Silva, Sudbrack, Vitor [UNESP], Acosta-Avalos, Daniel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00249-020-01467-4
http://hdl.handle.net/11449/206618
Resumo: Magnetotactic microorganisms can be found as unicellular prokaryotes, as cocci, vibrions, spirilla and rods, and as multicellular organisms. Multicellular magnetotactic prokaryotes are magnetotactic microorganisms composed by several magnetotactic bacteria organized almost in a spherical helix, and one of the most studied is Candidatus Magnetoglobus multicellularis. Several studies have shown that Ca. M. multicellularis displays forms of behavior not well explained by magnetotaxis. One of these is escape motility, also known as “ping-pong” motion. Studies done in the past associated the “ping-pong” motion to some magnetoreceptive behavior, but those studies were never replicated. In the present manuscript a characterization of escape motility trajectories of Ca. M. multicellularis was done for several magnetic fields, considering that this microorganism swims in cylindrical helical trajectories. It was observed that the escape motility can be separated into three phases: (I) when the microorganism jumps from the drop border, (II) where the microorganism moves almost perpendicular to the magnetic field and (III) when the microorganism returns to the drop border. The total time of the whole escape motility, the time spent in phase II and the displacement distance in phase I decreases when the magnetic field increases. Our results show that the escape motility has several characteristics that depend on the magnetic field and cannot be understood by magnetotaxis, with a magnetoreceptive mechanism being the best explanation.
id UNSP_dbe18e176a61308ec6ddf63df29318cf
oai_identifier_str oai:repositorio.unesp.br:11449/206618
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fieldsEscape motilityMagnetoreceptionMagnetotaxisMulticellular magnetotactic prokaryoteMagnetotactic microorganisms can be found as unicellular prokaryotes, as cocci, vibrions, spirilla and rods, and as multicellular organisms. Multicellular magnetotactic prokaryotes are magnetotactic microorganisms composed by several magnetotactic bacteria organized almost in a spherical helix, and one of the most studied is Candidatus Magnetoglobus multicellularis. Several studies have shown that Ca. M. multicellularis displays forms of behavior not well explained by magnetotaxis. One of these is escape motility, also known as “ping-pong” motion. Studies done in the past associated the “ping-pong” motion to some magnetoreceptive behavior, but those studies were never replicated. In the present manuscript a characterization of escape motility trajectories of Ca. M. multicellularis was done for several magnetic fields, considering that this microorganism swims in cylindrical helical trajectories. It was observed that the escape motility can be separated into three phases: (I) when the microorganism jumps from the drop border, (II) where the microorganism moves almost perpendicular to the magnetic field and (III) when the microorganism returns to the drop border. The total time of the whole escape motility, the time spent in phase II and the displacement distance in phase I decreases when the magnetic field increases. Our results show that the escape motility has several characteristics that depend on the magnetic field and cannot be understood by magnetotaxis, with a magnetoreceptive mechanism being the best explanation.Instituto de Física de São Carlos Universidade de São Paulo, Avenida Trabalhador São-carlense 400Centro Brasileiro de Pesquisas Físicas-CBPF, rua Xavier Sigaud 150, UrcaDepartamento de Física Centro de Ciências Exatas Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n-Bela VistaDepartamento de Física Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Campus Universitário da UFJF, Rua José Lourenço Kelmer s/n, São PedroFacultad de Ciencias Físicas Universidad Nacional Mayor de San Marcos (UNMSM), calle Germán Amézaga 375, Cuidad UniversitariaInstituto de Física Teórica Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Rua Dr Teobaldo Ferraz 271Instituto de Física Teórica Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Rua Dr Teobaldo Ferraz 271Universidade de São Paulo (USP)Centro Brasileiro de Pesquisas Físicas-CBPFUniversidade Federal de Viçosa (UFV)Universidade Federal de Juiz de ForaUniversidad Nacional Mayor de San Marcos (UNMSM)Universidade Estadual Paulista (Unesp)Sepulchro, Ana Gabriela Veigade Barros, Henrique Linsde Mota, Henrique Oliveira LeirasBerbereia, Karen ShiroivaHuamani, Katterine Patricia TaipeLopes, Lis Carneiro da SilvaSudbrack, Vitor [UNESP]Acosta-Avalos, Daniel2021-06-25T10:35:18Z2021-06-25T10:35:18Z2020-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article609-617http://dx.doi.org/10.1007/s00249-020-01467-4European Biophysics Journal, v. 49, n. 7, p. 609-617, 2020.1432-10170175-7571http://hdl.handle.net/11449/20661810.1007/s00249-020-01467-42-s2.0-85092167147Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengEuropean Biophysics Journalinfo:eu-repo/semantics/openAccess2021-10-23T08:10:47Zoai:repositorio.unesp.br:11449/206618Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:39:24.077952Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
title Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
spellingShingle Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
Sepulchro, Ana Gabriela Veiga
Escape motility
Magnetoreception
Magnetotaxis
Multicellular magnetotactic prokaryote
title_short Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
title_full Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
title_fullStr Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
title_full_unstemmed Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
title_sort Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields
author Sepulchro, Ana Gabriela Veiga
author_facet Sepulchro, Ana Gabriela Veiga
de Barros, Henrique Lins
de Mota, Henrique Oliveira Leiras
Berbereia, Karen Shiroiva
Huamani, Katterine Patricia Taipe
Lopes, Lis Carneiro da Silva
Sudbrack, Vitor [UNESP]
Acosta-Avalos, Daniel
author_role author
author2 de Barros, Henrique Lins
de Mota, Henrique Oliveira Leiras
Berbereia, Karen Shiroiva
Huamani, Katterine Patricia Taipe
Lopes, Lis Carneiro da Silva
Sudbrack, Vitor [UNESP]
Acosta-Avalos, Daniel
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Centro Brasileiro de Pesquisas Físicas-CBPF
Universidade Federal de Viçosa (UFV)
Universidade Federal de Juiz de Fora
Universidad Nacional Mayor de San Marcos (UNMSM)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Sepulchro, Ana Gabriela Veiga
de Barros, Henrique Lins
de Mota, Henrique Oliveira Leiras
Berbereia, Karen Shiroiva
Huamani, Katterine Patricia Taipe
Lopes, Lis Carneiro da Silva
Sudbrack, Vitor [UNESP]
Acosta-Avalos, Daniel
dc.subject.por.fl_str_mv Escape motility
Magnetoreception
Magnetotaxis
Multicellular magnetotactic prokaryote
topic Escape motility
Magnetoreception
Magnetotaxis
Multicellular magnetotactic prokaryote
description Magnetotactic microorganisms can be found as unicellular prokaryotes, as cocci, vibrions, spirilla and rods, and as multicellular organisms. Multicellular magnetotactic prokaryotes are magnetotactic microorganisms composed by several magnetotactic bacteria organized almost in a spherical helix, and one of the most studied is Candidatus Magnetoglobus multicellularis. Several studies have shown that Ca. M. multicellularis displays forms of behavior not well explained by magnetotaxis. One of these is escape motility, also known as “ping-pong” motion. Studies done in the past associated the “ping-pong” motion to some magnetoreceptive behavior, but those studies were never replicated. In the present manuscript a characterization of escape motility trajectories of Ca. M. multicellularis was done for several magnetic fields, considering that this microorganism swims in cylindrical helical trajectories. It was observed that the escape motility can be separated into three phases: (I) when the microorganism jumps from the drop border, (II) where the microorganism moves almost perpendicular to the magnetic field and (III) when the microorganism returns to the drop border. The total time of the whole escape motility, the time spent in phase II and the displacement distance in phase I decreases when the magnetic field increases. Our results show that the escape motility has several characteristics that depend on the magnetic field and cannot be understood by magnetotaxis, with a magnetoreceptive mechanism being the best explanation.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-01
2021-06-25T10:35:18Z
2021-06-25T10:35:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00249-020-01467-4
European Biophysics Journal, v. 49, n. 7, p. 609-617, 2020.
1432-1017
0175-7571
http://hdl.handle.net/11449/206618
10.1007/s00249-020-01467-4
2-s2.0-85092167147
url http://dx.doi.org/10.1007/s00249-020-01467-4
http://hdl.handle.net/11449/206618
identifier_str_mv European Biophysics Journal, v. 49, n. 7, p. 609-617, 2020.
1432-1017
0175-7571
10.1007/s00249-020-01467-4
2-s2.0-85092167147
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv European Biophysics Journal
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 609-617
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128258876637184