Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids

Detalhes bibliográficos
Autor(a) principal: Moreira, Alexandre C.
Data de Publicação: 2018
Outros Autores: Paredes, Helmo K. M. [UNESP], Souza, Wesley A. de, Marafao, Fernando P. [UNESP], Silva, Luiz C. P. da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TSG.2017.2771146
http://hdl.handle.net/11449/186518
Resumo: This paper presents an expert system (ES) based on decoupled power/current decomposition and the k-nearest neighbor pattern recognition method to identify and choose the correct mitigation solution for power quality improvement in three-phase ac microgrids under non-sinusoidal current and voltage operations. By using power/current terms, load conformity factors and a k-nearest neighbor classifier, the proposed ES achieved 99.98% classification accuracy. Simulation studies were carried out in a PSCAD/EMTDC environment, where the IEEE 13-bus feeder test system was in a grid connected microgrid mode. The obtained results indicate that the proposed ES is robust and able to easily select an appropriate/adequate compensation solution.
id UNSP_dd55af4c5bd3cf07bda4ed2765daf82e
oai_identifier_str oai:repositorio.unesp.br:11449/186518
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC MicrogridsConservative power theorydistributed generationexpert systemk-NN classifierharmonicsmicrogridpower factorreactive powerunbalance loadsThis paper presents an expert system (ES) based on decoupled power/current decomposition and the k-nearest neighbor pattern recognition method to identify and choose the correct mitigation solution for power quality improvement in three-phase ac microgrids under non-sinusoidal current and voltage operations. By using power/current terms, load conformity factors and a k-nearest neighbor classifier, the proposed ES achieved 99.98% classification accuracy. Simulation studies were carried out in a PSCAD/EMTDC environment, where the IEEE 13-bus feeder test system was in a grid connected microgrid mode. The obtained results indicate that the proposed ES is robust and able to easily select an appropriate/adequate compensation solution.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Joao del Rei, BR-36420000 Ouro Branco, BrazilSao Paulo State Univ, Inst Sci & Technol, BR-18087180 Sorocaba, BrazilUniv Estadual Campinas, Sch Elect & Comp Engn, BR-13081970 Campinas, SP, BrazilSao Paulo State Univ, Inst Sci & Technol, BR-18087180 Sorocaba, BrazilFAPESP: 2013/08545-6FAPESP: 2016/08645-9Ieee-inst Electrical Electronics Engineers IncUniv Fed Sao Joao del ReiUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Moreira, Alexandre C.Paredes, Helmo K. M. [UNESP]Souza, Wesley A. deMarafao, Fernando P. [UNESP]Silva, Luiz C. P. da2019-10-05T04:10:53Z2019-10-05T04:10:53Z2018-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article6951-6960http://dx.doi.org/10.1109/TSG.2017.2771146Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 6951-6960, 2018.1949-3053http://hdl.handle.net/11449/18651810.1109/TSG.2017.2771146WOS:000452475200135Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Smart Gridinfo:eu-repo/semantics/openAccess2021-10-23T20:18:01Zoai:repositorio.unesp.br:11449/186518Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:04:04.638416Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
title Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
spellingShingle Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
Moreira, Alexandre C.
Conservative power theory
distributed generation
expert system
k-NN classifier
harmonics
microgrid
power factor
reactive power
unbalance loads
title_short Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
title_full Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
title_fullStr Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
title_full_unstemmed Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
title_sort Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
author Moreira, Alexandre C.
author_facet Moreira, Alexandre C.
Paredes, Helmo K. M. [UNESP]
Souza, Wesley A. de
Marafao, Fernando P. [UNESP]
Silva, Luiz C. P. da
author_role author
author2 Paredes, Helmo K. M. [UNESP]
Souza, Wesley A. de
Marafao, Fernando P. [UNESP]
Silva, Luiz C. P. da
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Univ Fed Sao Joao del Rei
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Moreira, Alexandre C.
Paredes, Helmo K. M. [UNESP]
Souza, Wesley A. de
Marafao, Fernando P. [UNESP]
Silva, Luiz C. P. da
dc.subject.por.fl_str_mv Conservative power theory
distributed generation
expert system
k-NN classifier
harmonics
microgrid
power factor
reactive power
unbalance loads
topic Conservative power theory
distributed generation
expert system
k-NN classifier
harmonics
microgrid
power factor
reactive power
unbalance loads
description This paper presents an expert system (ES) based on decoupled power/current decomposition and the k-nearest neighbor pattern recognition method to identify and choose the correct mitigation solution for power quality improvement in three-phase ac microgrids under non-sinusoidal current and voltage operations. By using power/current terms, load conformity factors and a k-nearest neighbor classifier, the proposed ES achieved 99.98% classification accuracy. Simulation studies were carried out in a PSCAD/EMTDC environment, where the IEEE 13-bus feeder test system was in a grid connected microgrid mode. The obtained results indicate that the proposed ES is robust and able to easily select an appropriate/adequate compensation solution.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-01
2019-10-05T04:10:53Z
2019-10-05T04:10:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TSG.2017.2771146
Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 6951-6960, 2018.
1949-3053
http://hdl.handle.net/11449/186518
10.1109/TSG.2017.2771146
WOS:000452475200135
url http://dx.doi.org/10.1109/TSG.2017.2771146
http://hdl.handle.net/11449/186518
identifier_str_mv Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 6951-6960, 2018.
1949-3053
10.1109/TSG.2017.2771146
WOS:000452475200135
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ieee Transactions On Smart Grid
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6951-6960
dc.publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129388207669248