Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TSG.2017.2771146 http://hdl.handle.net/11449/186518 |
Resumo: | This paper presents an expert system (ES) based on decoupled power/current decomposition and the k-nearest neighbor pattern recognition method to identify and choose the correct mitigation solution for power quality improvement in three-phase ac microgrids under non-sinusoidal current and voltage operations. By using power/current terms, load conformity factors and a k-nearest neighbor classifier, the proposed ES achieved 99.98% classification accuracy. Simulation studies were carried out in a PSCAD/EMTDC environment, where the IEEE 13-bus feeder test system was in a grid connected microgrid mode. The obtained results indicate that the proposed ES is robust and able to easily select an appropriate/adequate compensation solution. |
id |
UNSP_dd55af4c5bd3cf07bda4ed2765daf82e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186518 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC MicrogridsConservative power theorydistributed generationexpert systemk-NN classifierharmonicsmicrogridpower factorreactive powerunbalance loadsThis paper presents an expert system (ES) based on decoupled power/current decomposition and the k-nearest neighbor pattern recognition method to identify and choose the correct mitigation solution for power quality improvement in three-phase ac microgrids under non-sinusoidal current and voltage operations. By using power/current terms, load conformity factors and a k-nearest neighbor classifier, the proposed ES achieved 99.98% classification accuracy. Simulation studies were carried out in a PSCAD/EMTDC environment, where the IEEE 13-bus feeder test system was in a grid connected microgrid mode. The obtained results indicate that the proposed ES is robust and able to easily select an appropriate/adequate compensation solution.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Joao del Rei, BR-36420000 Ouro Branco, BrazilSao Paulo State Univ, Inst Sci & Technol, BR-18087180 Sorocaba, BrazilUniv Estadual Campinas, Sch Elect & Comp Engn, BR-13081970 Campinas, SP, BrazilSao Paulo State Univ, Inst Sci & Technol, BR-18087180 Sorocaba, BrazilFAPESP: 2013/08545-6FAPESP: 2016/08645-9Ieee-inst Electrical Electronics Engineers IncUniv Fed Sao Joao del ReiUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Moreira, Alexandre C.Paredes, Helmo K. M. [UNESP]Souza, Wesley A. deMarafao, Fernando P. [UNESP]Silva, Luiz C. P. da2019-10-05T04:10:53Z2019-10-05T04:10:53Z2018-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article6951-6960http://dx.doi.org/10.1109/TSG.2017.2771146Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 6951-6960, 2018.1949-3053http://hdl.handle.net/11449/18651810.1109/TSG.2017.2771146WOS:000452475200135Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Smart Gridinfo:eu-repo/semantics/openAccess2021-10-23T20:18:01Zoai:repositorio.unesp.br:11449/186518Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:04:04.638416Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids |
title |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids |
spellingShingle |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids Moreira, Alexandre C. Conservative power theory distributed generation expert system k-NN classifier harmonics microgrid power factor reactive power unbalance loads |
title_short |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids |
title_full |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids |
title_fullStr |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids |
title_full_unstemmed |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids |
title_sort |
Intelligent Expert System for Power Quality Improvement Under Distorted and Unbalanced Conditions in Three-Phase AC Microgrids |
author |
Moreira, Alexandre C. |
author_facet |
Moreira, Alexandre C. Paredes, Helmo K. M. [UNESP] Souza, Wesley A. de Marafao, Fernando P. [UNESP] Silva, Luiz C. P. da |
author_role |
author |
author2 |
Paredes, Helmo K. M. [UNESP] Souza, Wesley A. de Marafao, Fernando P. [UNESP] Silva, Luiz C. P. da |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Univ Fed Sao Joao del Rei Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Moreira, Alexandre C. Paredes, Helmo K. M. [UNESP] Souza, Wesley A. de Marafao, Fernando P. [UNESP] Silva, Luiz C. P. da |
dc.subject.por.fl_str_mv |
Conservative power theory distributed generation expert system k-NN classifier harmonics microgrid power factor reactive power unbalance loads |
topic |
Conservative power theory distributed generation expert system k-NN classifier harmonics microgrid power factor reactive power unbalance loads |
description |
This paper presents an expert system (ES) based on decoupled power/current decomposition and the k-nearest neighbor pattern recognition method to identify and choose the correct mitigation solution for power quality improvement in three-phase ac microgrids under non-sinusoidal current and voltage operations. By using power/current terms, load conformity factors and a k-nearest neighbor classifier, the proposed ES achieved 99.98% classification accuracy. Simulation studies were carried out in a PSCAD/EMTDC environment, where the IEEE 13-bus feeder test system was in a grid connected microgrid mode. The obtained results indicate that the proposed ES is robust and able to easily select an appropriate/adequate compensation solution. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-01 2019-10-05T04:10:53Z 2019-10-05T04:10:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TSG.2017.2771146 Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 6951-6960, 2018. 1949-3053 http://hdl.handle.net/11449/186518 10.1109/TSG.2017.2771146 WOS:000452475200135 |
url |
http://dx.doi.org/10.1109/TSG.2017.2771146 http://hdl.handle.net/11449/186518 |
identifier_str_mv |
Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 6951-6960, 2018. 1949-3053 10.1109/TSG.2017.2771146 WOS:000452475200135 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Transactions On Smart Grid |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
6951-6960 |
dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129388207669248 |