An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1155/2012/781041 http://hdl.handle.net/11449/73291 |
Resumo: | An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al. |
id |
UNSP_de79a409264fec3afffce9b75531b557 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73291 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planningComparative analysisEnhanced genetic algorithmsHigher efficiencyInitial populationLinear programming problemMultistage transmissionOptimal solutionsTransmission expansion planningGenetic algorithmsHeuristic algorithmsLinear programmingProblem solvingAn enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.Departamento de Engenharia Elétrica Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Avenida Brasil 56, 15385-000 Ilha Solteira, SPDepartamento de Engenharia Elétrica Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Avenida Brasil 56, 15385-000 Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Gallego, Luis A. [UNESP]Rider, Marcos J. [UNESP]Lavorato, Marina [UNESP]Paldilha-Feltrin, Antonio [UNESP]2014-05-27T11:26:27Z2014-05-27T11:26:27Z2012-04-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1155/2012/781041Journal of Electrical and Computer Engineering.2090-01472090-0155http://hdl.handle.net/11449/7329110.1155/2012/7810412-s2.0-848598769102-s2.0-84859876910.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Electrical and Computer Engineering0,1710,171info:eu-repo/semantics/openAccess2024-07-04T19:05:48Zoai:repositorio.unesp.br:11449/73291Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:36:48.523121Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning |
title |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning |
spellingShingle |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning Gallego, Luis A. [UNESP] Comparative analysis Enhanced genetic algorithms Higher efficiency Initial population Linear programming problem Multistage transmission Optimal solutions Transmission expansion planning Genetic algorithms Heuristic algorithms Linear programming Problem solving |
title_short |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning |
title_full |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning |
title_fullStr |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning |
title_full_unstemmed |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning |
title_sort |
An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning |
author |
Gallego, Luis A. [UNESP] |
author_facet |
Gallego, Luis A. [UNESP] Rider, Marcos J. [UNESP] Lavorato, Marina [UNESP] Paldilha-Feltrin, Antonio [UNESP] |
author_role |
author |
author2 |
Rider, Marcos J. [UNESP] Lavorato, Marina [UNESP] Paldilha-Feltrin, Antonio [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Gallego, Luis A. [UNESP] Rider, Marcos J. [UNESP] Lavorato, Marina [UNESP] Paldilha-Feltrin, Antonio [UNESP] |
dc.subject.por.fl_str_mv |
Comparative analysis Enhanced genetic algorithms Higher efficiency Initial population Linear programming problem Multistage transmission Optimal solutions Transmission expansion planning Genetic algorithms Heuristic algorithms Linear programming Problem solving |
topic |
Comparative analysis Enhanced genetic algorithms Higher efficiency Initial population Linear programming problem Multistage transmission Optimal solutions Transmission expansion planning Genetic algorithms Heuristic algorithms Linear programming Problem solving |
description |
An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04-23 2014-05-27T11:26:27Z 2014-05-27T11:26:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1155/2012/781041 Journal of Electrical and Computer Engineering. 2090-0147 2090-0155 http://hdl.handle.net/11449/73291 10.1155/2012/781041 2-s2.0-84859876910 2-s2.0-84859876910.pdf |
url |
http://dx.doi.org/10.1155/2012/781041 http://hdl.handle.net/11449/73291 |
identifier_str_mv |
Journal of Electrical and Computer Engineering. 2090-0147 2090-0155 10.1155/2012/781041 2-s2.0-84859876910 2-s2.0-84859876910.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Electrical and Computer Engineering 0,171 0,171 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128387951099904 |