Visual analytics of time-varying multivariate ionospheric scintillation data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.cag.2017.08.013 http://hdl.handle.net/11449/175142 |
Resumo: | We present a clustering-based interactive approach to multivariate data analysis, motivated by the specific needs of scintillation data. Ionospheric scintillation is a rapid variation in the amplitude and/or phase of radio signals traveling through the ionosphere. This spatial and time-varying phenomenon is of great interest since it affects the reception quality of satellite signals. Specialized receivers at strategic regions can track multiple variables related to this phenomenon, generating a database of observations of regional ionospheric scintillation. We introduce a visual analytics solution to support analysis of such data, keeping in mind the general applicability of our approach to similar multivariate data analysis situations. Taking into account typical user questions, we combine visualization and data mining algorithms that satisfy these goals: (i) derive a representation of the variables monitored that conveys their behavior in detail, at multiple user-defined aggregation levels; (ii) provide overviews of multiple variables regarding their behavioral similarity over selected time periods; (iii) support users when identifying representative variables for characterizing scintillation behavior. We illustrate the capabilities of our proposed framework by presenting case studies driven directly by questions formulated by collaborating domain experts. |
id |
UNSP_de868b4e61ae0c9bfef0f04b90d0c9cf |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/175142 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Visual analytics of time-varying multivariate ionospheric scintillation dataData visualizationIonospheric scintillationTime-varying multivariate dataVisual analyticsVisual feature selectionWe present a clustering-based interactive approach to multivariate data analysis, motivated by the specific needs of scintillation data. Ionospheric scintillation is a rapid variation in the amplitude and/or phase of radio signals traveling through the ionosphere. This spatial and time-varying phenomenon is of great interest since it affects the reception quality of satellite signals. Specialized receivers at strategic regions can track multiple variables related to this phenomenon, generating a database of observations of regional ionospheric scintillation. We introduce a visual analytics solution to support analysis of such data, keeping in mind the general applicability of our approach to similar multivariate data analysis situations. Taking into account typical user questions, we combine visualization and data mining algorithms that satisfy these goals: (i) derive a representation of the variables monitored that conveys their behavior in detail, at multiple user-defined aggregation levels; (ii) provide overviews of multiple variables regarding their behavioral similarity over selected time periods; (iii) support users when identifying representative variables for characterizing scintillation behavior. We illustrate the capabilities of our proposed framework by presenting case studies driven directly by questions formulated by collaborating domain experts.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Instituto de Ciências Matemticas e de Computação (ICMC) University of São Paulo (USP), São Carlos, SP, 13566-590Faculdade de Ciências e Tecnologia (FCT) São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900Department of Computer Science University of California, DavisFaculdade de Ciências e Tecnologia (FCT) São Paulo State University (UNESP), Presidente Prudente, SP, 19060-900FAPESP: 11/22749-8FAPESP: 12/24537-0FAPESP: 15/12831-0FAPESP: 17/05838CNPq: 305696/2013-0CAPES: 88881.134266/2016-01Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)University of CaliforniaSoriano-Vargas, AureaVani, Bruno C. [UNESP]Shimabukuro, Milton H. [UNESP]G. Monico, João F. [UNESP]F. Oliveira, Maria CristinaHamann, Bernd2018-12-11T17:14:34Z2018-12-11T17:14:34Z2017-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1339-1351application/pdfhttp://dx.doi.org/10.1016/j.cag.2017.08.013Computers and Graphics (Pergamon), v. 68, p. 1339-1351.0097-8493http://hdl.handle.net/11449/17514210.1016/j.cag.2017.08.0132-s2.0-850289439562-s2.0-85028943956;pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers and Graphics (Pergamon)0,355info:eu-repo/semantics/openAccess2024-06-18T18:17:53Zoai:repositorio.unesp.br:11449/175142Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:33:36.131432Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Visual analytics of time-varying multivariate ionospheric scintillation data |
title |
Visual analytics of time-varying multivariate ionospheric scintillation data |
spellingShingle |
Visual analytics of time-varying multivariate ionospheric scintillation data Soriano-Vargas, Aurea Data visualization Ionospheric scintillation Time-varying multivariate data Visual analytics Visual feature selection |
title_short |
Visual analytics of time-varying multivariate ionospheric scintillation data |
title_full |
Visual analytics of time-varying multivariate ionospheric scintillation data |
title_fullStr |
Visual analytics of time-varying multivariate ionospheric scintillation data |
title_full_unstemmed |
Visual analytics of time-varying multivariate ionospheric scintillation data |
title_sort |
Visual analytics of time-varying multivariate ionospheric scintillation data |
author |
Soriano-Vargas, Aurea |
author_facet |
Soriano-Vargas, Aurea Vani, Bruno C. [UNESP] Shimabukuro, Milton H. [UNESP] G. Monico, João F. [UNESP] F. Oliveira, Maria Cristina Hamann, Bernd |
author_role |
author |
author2 |
Vani, Bruno C. [UNESP] Shimabukuro, Milton H. [UNESP] G. Monico, João F. [UNESP] F. Oliveira, Maria Cristina Hamann, Bernd |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) University of California |
dc.contributor.author.fl_str_mv |
Soriano-Vargas, Aurea Vani, Bruno C. [UNESP] Shimabukuro, Milton H. [UNESP] G. Monico, João F. [UNESP] F. Oliveira, Maria Cristina Hamann, Bernd |
dc.subject.por.fl_str_mv |
Data visualization Ionospheric scintillation Time-varying multivariate data Visual analytics Visual feature selection |
topic |
Data visualization Ionospheric scintillation Time-varying multivariate data Visual analytics Visual feature selection |
description |
We present a clustering-based interactive approach to multivariate data analysis, motivated by the specific needs of scintillation data. Ionospheric scintillation is a rapid variation in the amplitude and/or phase of radio signals traveling through the ionosphere. This spatial and time-varying phenomenon is of great interest since it affects the reception quality of satellite signals. Specialized receivers at strategic regions can track multiple variables related to this phenomenon, generating a database of observations of regional ionospheric scintillation. We introduce a visual analytics solution to support analysis of such data, keeping in mind the general applicability of our approach to similar multivariate data analysis situations. Taking into account typical user questions, we combine visualization and data mining algorithms that satisfy these goals: (i) derive a representation of the variables monitored that conveys their behavior in detail, at multiple user-defined aggregation levels; (ii) provide overviews of multiple variables regarding their behavioral similarity over selected time periods; (iii) support users when identifying representative variables for characterizing scintillation behavior. We illustrate the capabilities of our proposed framework by presenting case studies driven directly by questions formulated by collaborating domain experts. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-01 2018-12-11T17:14:34Z 2018-12-11T17:14:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.cag.2017.08.013 Computers and Graphics (Pergamon), v. 68, p. 1339-1351. 0097-8493 http://hdl.handle.net/11449/175142 10.1016/j.cag.2017.08.013 2-s2.0-85028943956 2-s2.0-85028943956;pdf |
url |
http://dx.doi.org/10.1016/j.cag.2017.08.013 http://hdl.handle.net/11449/175142 |
identifier_str_mv |
Computers and Graphics (Pergamon), v. 68, p. 1339-1351. 0097-8493 10.1016/j.cag.2017.08.013 2-s2.0-85028943956 2-s2.0-85028943956;pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computers and Graphics (Pergamon) 0,355 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1339-1351 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128531064946688 |