SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IWSSIP48289.2020.9145427 http://hdl.handle.net/11449/221528 |
Resumo: | One of the fundamental dilemmas of mobile robotics is the use of sensory information to locate an agent in geographic space. In this paper, we developed a global relocation system to predict the robot's position and avoid unforeseen actions from a monocular image, which we named SpaceYNet. We incorporated Inception layers to symmetric layers of down-sampling and up-sampling to solve depth-scene and 6-DoF estimation simultaneously. Also, we compared SpaceYNet to PoseNet - a state of the art in robot pose regression using CNN - in order to evaluate it. The comparison comprised one public dataset and one created in a broad indoor environment. SpaceYNet showed higher accuracy in global percentages when compared to PoseNet. |
id |
UNSP_df1a1afaf5b067bdc7d4cf7fef433bef |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/221528 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression SimultaneouslyDatasetdepth-sceneposeregressionrobotOne of the fundamental dilemmas of mobile robotics is the use of sensory information to locate an agent in geographic space. In this paper, we developed a global relocation system to predict the robot's position and avoid unforeseen actions from a monocular image, which we named SpaceYNet. We incorporated Inception layers to symmetric layers of down-sampling and up-sampling to solve depth-scene and 6-DoF estimation simultaneously. Also, we compared SpaceYNet to PoseNet - a state of the art in robot pose regression using CNN - in order to evaluate it. The comparison comprised one public dataset and one created in a broad indoor environment. SpaceYNet showed higher accuracy in global percentages when compared to PoseNet.Universidade Federal da ParaíbaUniversidade Estadual Paulista 'Júlio de Mesquita Filho'Universidade Estadual Paulista 'Júlio de Mesquita Filho'Universidade Federal da Paraíba (UFPB)Universidade Estadual Paulista (UNESP)Aragao, DunfreyNascimento, TiagoMondini, Adriano [UNESP]2022-04-28T19:29:14Z2022-04-28T19:29:14Z2020-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject217-222http://dx.doi.org/10.1109/IWSSIP48289.2020.9145427International Conference on Systems, Signals, and Image Processing, v. 2020-July, p. 217-222.2157-87022157-8672http://hdl.handle.net/11449/22152810.1109/IWSSIP48289.2020.91454272-s2.0-85089136198Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Conference on Systems, Signals, and Image Processinginfo:eu-repo/semantics/openAccess2022-04-28T19:29:14Zoai:repositorio.unesp.br:11449/221528Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:49:22.481690Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously |
title |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously |
spellingShingle |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously Aragao, Dunfrey Dataset depth-scene pose regression robot |
title_short |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously |
title_full |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously |
title_fullStr |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously |
title_full_unstemmed |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously |
title_sort |
SpaceYNet: A Novel Approach to Pose and Depth-Scene Regression Simultaneously |
author |
Aragao, Dunfrey |
author_facet |
Aragao, Dunfrey Nascimento, Tiago Mondini, Adriano [UNESP] |
author_role |
author |
author2 |
Nascimento, Tiago Mondini, Adriano [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal da Paraíba (UFPB) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Aragao, Dunfrey Nascimento, Tiago Mondini, Adriano [UNESP] |
dc.subject.por.fl_str_mv |
Dataset depth-scene pose regression robot |
topic |
Dataset depth-scene pose regression robot |
description |
One of the fundamental dilemmas of mobile robotics is the use of sensory information to locate an agent in geographic space. In this paper, we developed a global relocation system to predict the robot's position and avoid unforeseen actions from a monocular image, which we named SpaceYNet. We incorporated Inception layers to symmetric layers of down-sampling and up-sampling to solve depth-scene and 6-DoF estimation simultaneously. Also, we compared SpaceYNet to PoseNet - a state of the art in robot pose regression using CNN - in order to evaluate it. The comparison comprised one public dataset and one created in a broad indoor environment. SpaceYNet showed higher accuracy in global percentages when compared to PoseNet. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-01 2022-04-28T19:29:14Z 2022-04-28T19:29:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IWSSIP48289.2020.9145427 International Conference on Systems, Signals, and Image Processing, v. 2020-July, p. 217-222. 2157-8702 2157-8672 http://hdl.handle.net/11449/221528 10.1109/IWSSIP48289.2020.9145427 2-s2.0-85089136198 |
url |
http://dx.doi.org/10.1109/IWSSIP48289.2020.9145427 http://hdl.handle.net/11449/221528 |
identifier_str_mv |
International Conference on Systems, Signals, and Image Processing, v. 2020-July, p. 217-222. 2157-8702 2157-8672 10.1109/IWSSIP48289.2020.9145427 2-s2.0-85089136198 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Conference on Systems, Signals, and Image Processing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
217-222 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129254349602816 |