Steel bars identification in reinforced concrete structures by using ANN and magnetic fields

Detalhes bibliográficos
Autor(a) principal: De Alcantara, N. P. [UNESP]
Data de Publicação: 2005
Outros Autores: Gasparini, M. E L [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.2529/PIERS041210092825
http://hdl.handle.net/11449/68593
Resumo: This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.
id UNSP_df455d8ba5ae32d88e223ef71f672c44
oai_identifier_str oai:repositorio.unesp.br:11449/68593
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Steel bars identification in reinforced concrete structures by using ANN and magnetic fieldsBackpropagationBars (metal)Building materialsComposite beams and girdersConcrete buildingsConcrete constructionConcrete testingElectric fault locationKetonesMagnetic field measurementMagnetic fieldsNondestructive examinationPiersReinforced concreteSteelSteel testingArtificial neural networksFinite element programsMagnetic inductionsMultilayeredNon destructive testingPerceptronReal systemsReinforced concrete structuresSteel barsTraining algorithmsNeural networksThis work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.São Paulo State UniversitySão Paulo State UniversityUniversidade Estadual Paulista (Unesp)De Alcantara, N. P. [UNESP]Gasparini, M. E L [UNESP]2014-05-27T11:21:43Z2014-05-27T11:21:43Z2005-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject428-431application/pdfhttp://dx.doi.org/10.2529/PIERS041210092825PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 428-431.http://hdl.handle.net/11449/6859310.2529/PIERS0412100928252-s2.0-479490911432-s2.0-47949091143.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedingsinfo:eu-repo/semantics/openAccess2023-11-16T06:09:10Zoai:repositorio.unesp.br:11449/68593Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:49:12.060760Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
title Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
spellingShingle Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
De Alcantara, N. P. [UNESP]
Backpropagation
Bars (metal)
Building materials
Composite beams and girders
Concrete buildings
Concrete construction
Concrete testing
Electric fault location
Ketones
Magnetic field measurement
Magnetic fields
Nondestructive examination
Piers
Reinforced concrete
Steel
Steel testing
Artificial neural networks
Finite element programs
Magnetic inductions
Multilayered
Non destructive testing
Perceptron
Real systems
Reinforced concrete structures
Steel bars
Training algorithms
Neural networks
title_short Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
title_full Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
title_fullStr Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
title_full_unstemmed Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
title_sort Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
author De Alcantara, N. P. [UNESP]
author_facet De Alcantara, N. P. [UNESP]
Gasparini, M. E L [UNESP]
author_role author
author2 Gasparini, M. E L [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv De Alcantara, N. P. [UNESP]
Gasparini, M. E L [UNESP]
dc.subject.por.fl_str_mv Backpropagation
Bars (metal)
Building materials
Composite beams and girders
Concrete buildings
Concrete construction
Concrete testing
Electric fault location
Ketones
Magnetic field measurement
Magnetic fields
Nondestructive examination
Piers
Reinforced concrete
Steel
Steel testing
Artificial neural networks
Finite element programs
Magnetic inductions
Multilayered
Non destructive testing
Perceptron
Real systems
Reinforced concrete structures
Steel bars
Training algorithms
Neural networks
topic Backpropagation
Bars (metal)
Building materials
Composite beams and girders
Concrete buildings
Concrete construction
Concrete testing
Electric fault location
Ketones
Magnetic field measurement
Magnetic fields
Nondestructive examination
Piers
Reinforced concrete
Steel
Steel testing
Artificial neural networks
Finite element programs
Magnetic inductions
Multilayered
Non destructive testing
Perceptron
Real systems
Reinforced concrete structures
Steel bars
Training algorithms
Neural networks
description This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.
publishDate 2005
dc.date.none.fl_str_mv 2005-12-01
2014-05-27T11:21:43Z
2014-05-27T11:21:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.2529/PIERS041210092825
PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 428-431.
http://hdl.handle.net/11449/68593
10.2529/PIERS041210092825
2-s2.0-47949091143
2-s2.0-47949091143.pdf
url http://dx.doi.org/10.2529/PIERS041210092825
http://hdl.handle.net/11449/68593
identifier_str_mv PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 428-431.
10.2529/PIERS041210092825
2-s2.0-47949091143
2-s2.0-47949091143.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 428-431
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128862814470144