Steel bars identification in reinforced concrete structures by using ANN and magnetic fields
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.2529/PIERS041210092825 http://hdl.handle.net/11449/68593 |
Resumo: | This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology. |
id |
UNSP_df455d8ba5ae32d88e223ef71f672c44 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/68593 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fieldsBackpropagationBars (metal)Building materialsComposite beams and girdersConcrete buildingsConcrete constructionConcrete testingElectric fault locationKetonesMagnetic field measurementMagnetic fieldsNondestructive examinationPiersReinforced concreteSteelSteel testingArtificial neural networksFinite element programsMagnetic inductionsMultilayeredNon destructive testingPerceptronReal systemsReinforced concrete structuresSteel barsTraining algorithmsNeural networksThis work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology.São Paulo State UniversitySão Paulo State UniversityUniversidade Estadual Paulista (Unesp)De Alcantara, N. P. [UNESP]Gasparini, M. E L [UNESP]2014-05-27T11:21:43Z2014-05-27T11:21:43Z2005-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject428-431application/pdfhttp://dx.doi.org/10.2529/PIERS041210092825PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 428-431.http://hdl.handle.net/11449/6859310.2529/PIERS0412100928252-s2.0-479490911432-s2.0-47949091143.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedingsinfo:eu-repo/semantics/openAccess2023-11-16T06:09:10Zoai:repositorio.unesp.br:11449/68593Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:49:12.060760Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields |
title |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields |
spellingShingle |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields De Alcantara, N. P. [UNESP] Backpropagation Bars (metal) Building materials Composite beams and girders Concrete buildings Concrete construction Concrete testing Electric fault location Ketones Magnetic field measurement Magnetic fields Nondestructive examination Piers Reinforced concrete Steel Steel testing Artificial neural networks Finite element programs Magnetic inductions Multilayered Non destructive testing Perceptron Real systems Reinforced concrete structures Steel bars Training algorithms Neural networks |
title_short |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields |
title_full |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields |
title_fullStr |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields |
title_full_unstemmed |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields |
title_sort |
Steel bars identification in reinforced concrete structures by using ANN and magnetic fields |
author |
De Alcantara, N. P. [UNESP] |
author_facet |
De Alcantara, N. P. [UNESP] Gasparini, M. E L [UNESP] |
author_role |
author |
author2 |
Gasparini, M. E L [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
De Alcantara, N. P. [UNESP] Gasparini, M. E L [UNESP] |
dc.subject.por.fl_str_mv |
Backpropagation Bars (metal) Building materials Composite beams and girders Concrete buildings Concrete construction Concrete testing Electric fault location Ketones Magnetic field measurement Magnetic fields Nondestructive examination Piers Reinforced concrete Steel Steel testing Artificial neural networks Finite element programs Magnetic inductions Multilayered Non destructive testing Perceptron Real systems Reinforced concrete structures Steel bars Training algorithms Neural networks |
topic |
Backpropagation Bars (metal) Building materials Composite beams and girders Concrete buildings Concrete construction Concrete testing Electric fault location Ketones Magnetic field measurement Magnetic fields Nondestructive examination Piers Reinforced concrete Steel Steel testing Artificial neural networks Finite element programs Magnetic inductions Multilayered Non destructive testing Perceptron Real systems Reinforced concrete structures Steel bars Training algorithms Neural networks |
description |
This work proposes a methodology for non destructive testing (NDT) of reinforced concrete structures, using superficial magnetic fields and artificial neural networks, in order to identify the size and position of steel bars, embedded into the concrete. For the purposes of this paper, magnetic induction curves were obtained by using a finite element program. Perceptron Multilayered (PML) ANNs, with Levemberg-Marquardt training algorithm were used. The results presented very good agreement with the expect ones, encouraging the development of real systems based upon the proposed methodology. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12-01 2014-05-27T11:21:43Z 2014-05-27T11:21:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.2529/PIERS041210092825 PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 428-431. http://hdl.handle.net/11449/68593 10.2529/PIERS041210092825 2-s2.0-47949091143 2-s2.0-47949091143.pdf |
url |
http://dx.doi.org/10.2529/PIERS041210092825 http://hdl.handle.net/11449/68593 |
identifier_str_mv |
PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings, p. 428-431. 10.2529/PIERS041210092825 2-s2.0-47949091143 2-s2.0-47949091143.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PIERS 2005 - Progress in Electromagnetics Research Symposium, Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
428-431 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128862814470144 |