Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1093/mnras/stab914 http://hdl.handle.net/11449/210801 |
Resumo: | Artificial neural networks (ANNs) have been successfully used in the last years to identify patterns in astronomical images. The use of ANN in the field of asteroid dynamics has been, however, so far somewhat limited. In this work, we used for the first time ANN for the purpose of automatically identifying the behaviour of asteroid orbits affected by the M1:2 mean-motion resonance with Mars. Our model was able to perform well above 85 per cent levels for identifying images of asteroid resonant arguments in term of standard metrics like accuracy, precision, and recall, allowing to identify the orbital type of all numbered asteroids in the region. Using supervised machine learning methods, optimized through the use of genetic algorithms, we also predicted the orbital status of all multi-opposition asteroids in the area. We confirm that the M1:2 resonance mainly affects the orbits of the Massalia, Nysa, and Vesta asteroid families. |
id |
UNSP_df6937e05e5618eab6e005660a055a81 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/210801 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Marsmethods: data analysiscelestial mechanicsminor planets, asteroids: generalArtificial neural networks (ANNs) have been successfully used in the last years to identify patterns in astronomical images. The use of ANN in the field of asteroid dynamics has been, however, so far somewhat limited. In this work, we used for the first time ANN for the purpose of automatically identifying the behaviour of asteroid orbits affected by the M1:2 mean-motion resonance with Mars. Our model was able to perform well above 85 per cent levels for identifying images of asteroid resonant arguments in term of standard metrics like accuracy, precision, and recall, allowing to identify the orbital type of all numbered asteroids in the region. Using supervised machine learning methods, optimized through the use of genetic algorithms, we also predicted the orbital status of all multi-opposition asteroids in the area. We confirm that the M1:2 resonance mainly affects the orbits of the Massalia, Nysa, and Vesta asteroid families.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ UNESP, Sch Nat Sci & Engn, BR-12516410 Guaratingueta, SP, BrazilNatl Space Res Inst INPE, Div Space Mech & Control, CP 515, BR-12227310 Sao Jose Dos Campos, SP, BrazilSao Paulo State Univ UNESP, BR-13876750 Sao Joao Da Boa Vista, SP, BrazilSao Paulo State Univ UNESP, Sch Nat Sci & Engn, BR-12516410 Guaratingueta, SP, BrazilSao Paulo State Univ UNESP, BR-13876750 Sao Joao Da Boa Vista, SP, BrazilCNPq: 301577/2017-0CAPES: 88887.374148/2019-00Oxford Univ PressUniversidade Estadual Paulista (Unesp)Natl Space Res Inst INPECarruba, V [UNESP]Aljbaae, S.Domingos, R. C. [UNESP]Barletta, W. [UNESP]2021-06-26T08:03:19Z2021-06-26T08:03:19Z2021-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article692-700http://dx.doi.org/10.1093/mnras/stab914Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 504, n. 1, p. 692-700, 2021.0035-8711http://hdl.handle.net/11449/21080110.1093/mnras/stab914WOS:000656137100048Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonthly Notices Of The Royal Astronomical Societyinfo:eu-repo/semantics/openAccess2024-07-02T14:29:31Zoai:repositorio.unesp.br:11449/210801Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-02T14:29:31Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars |
title |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars |
spellingShingle |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars Carruba, V [UNESP] methods: data analysis celestial mechanics minor planets, asteroids: general |
title_short |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars |
title_full |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars |
title_fullStr |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars |
title_full_unstemmed |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars |
title_sort |
Artificial neural network classification of asteroids in the M1:2 mean-motion resonance with Mars |
author |
Carruba, V [UNESP] |
author_facet |
Carruba, V [UNESP] Aljbaae, S. Domingos, R. C. [UNESP] Barletta, W. [UNESP] |
author_role |
author |
author2 |
Aljbaae, S. Domingos, R. C. [UNESP] Barletta, W. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Natl Space Res Inst INPE |
dc.contributor.author.fl_str_mv |
Carruba, V [UNESP] Aljbaae, S. Domingos, R. C. [UNESP] Barletta, W. [UNESP] |
dc.subject.por.fl_str_mv |
methods: data analysis celestial mechanics minor planets, asteroids: general |
topic |
methods: data analysis celestial mechanics minor planets, asteroids: general |
description |
Artificial neural networks (ANNs) have been successfully used in the last years to identify patterns in astronomical images. The use of ANN in the field of asteroid dynamics has been, however, so far somewhat limited. In this work, we used for the first time ANN for the purpose of automatically identifying the behaviour of asteroid orbits affected by the M1:2 mean-motion resonance with Mars. Our model was able to perform well above 85 per cent levels for identifying images of asteroid resonant arguments in term of standard metrics like accuracy, precision, and recall, allowing to identify the orbital type of all numbered asteroids in the region. Using supervised machine learning methods, optimized through the use of genetic algorithms, we also predicted the orbital status of all multi-opposition asteroids in the area. We confirm that the M1:2 resonance mainly affects the orbits of the Massalia, Nysa, and Vesta asteroid families. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-26T08:03:19Z 2021-06-26T08:03:19Z 2021-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1093/mnras/stab914 Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 504, n. 1, p. 692-700, 2021. 0035-8711 http://hdl.handle.net/11449/210801 10.1093/mnras/stab914 WOS:000656137100048 |
url |
http://dx.doi.org/10.1093/mnras/stab914 http://hdl.handle.net/11449/210801 |
identifier_str_mv |
Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 504, n. 1, p. 692-700, 2021. 0035-8711 10.1093/mnras/stab914 WOS:000656137100048 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Monthly Notices Of The Royal Astronomical Society |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
692-700 |
dc.publisher.none.fl_str_mv |
Oxford Univ Press |
publisher.none.fl_str_mv |
Oxford Univ Press |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826304570275397632 |