Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories

Detalhes bibliográficos
Autor(a) principal: Nogueira, A. A.
Data de Publicação: 2018
Outros Autores: Pimentel, B. M. [UNESP], Rabanal, L. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024
http://hdl.handle.net/11449/184871
Resumo: This work explores the quantum dynamics of the interaction between scalar (matter) and vectorial (intermediate) particles and studies their thermodynamic equilibrium in the grand-canonical ensemble. The aim of the article is to clarify the connection between the physical degrees of freedom of a theory in both the quantization process and the description of the thermodynamic equilibrium, in which we see an intimate connection between physical degrees of freedom, Gibbs free energy and the equipartition theorem. We have split the work into two sections. First, we analyze the quantum interaction in the context of the generalized scalar Duffin-Kemmer-Petiau quantum electrodynamics (GSDKP) by using the functional formalism. We build the Hamiltonian structure following the Dirac methodology, apply the Faddeev-Senjanovic procedure to obtain the transition amplitude in the generalized Coulomb gauge and, finally, use the Faddeev-Popov-DeWitt method to write the amplitude in covariant form in the no-mixing gauge. Subsequently, we exclusively use the Matsubara-Fradkin (MF) formalism in order to describe fields in thermodynamical equilibrium. The corresponding equations in thermodynamic equilibrium for the scalar, vectorial and ghost sectors are explicitly constructed from which the extraction of the partition function is straightforward. It is in the construction of the vectorial sector that the emergence and importance of the ghost fields are revealed: they eliminate the extra non-physical degrees of freedom of the vectorial sector thus maintaining the physical degrees of freedom. (C) 2018 The Authors. Published by Elsevier B.V.
id UNSP_dfb5a4f2a358e934fa4029f66f9e09b1
oai_identifier_str oai:repositorio.unesp.br:11449/184871
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Transition amplitude, partition function and the role of physical degrees of freedom in gauge theoriesThis work explores the quantum dynamics of the interaction between scalar (matter) and vectorial (intermediate) particles and studies their thermodynamic equilibrium in the grand-canonical ensemble. The aim of the article is to clarify the connection between the physical degrees of freedom of a theory in both the quantization process and the description of the thermodynamic equilibrium, in which we see an intimate connection between physical degrees of freedom, Gibbs free energy and the equipartition theorem. We have split the work into two sections. First, we analyze the quantum interaction in the context of the generalized scalar Duffin-Kemmer-Petiau quantum electrodynamics (GSDKP) by using the functional formalism. We build the Hamiltonian structure following the Dirac methodology, apply the Faddeev-Senjanovic procedure to obtain the transition amplitude in the generalized Coulomb gauge and, finally, use the Faddeev-Popov-DeWitt method to write the amplitude in covariant form in the no-mixing gauge. Subsequently, we exclusively use the Matsubara-Fradkin (MF) formalism in order to describe fields in thermodynamical equilibrium. The corresponding equations in thermodynamic equilibrium for the scalar, vectorial and ghost sectors are explicitly constructed from which the extraction of the partition function is straightforward. It is in the construction of the vectorial sector that the emergence and importance of the ghost fields are revealed: they eliminate the extra non-physical degrees of freedom of the vectorial sector thus maintaining the physical degrees of freedom. (C) 2018 The Authors. Published by Elsevier B.V.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed ABC, CCNH, Av Estados 5001, BR-09210580 Santo Andre, SP, BrazilUniv Estadual Paulista, IFT, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, SP, BrazilUniv Estadual Paulista, IFT, Rua Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, SP, BrazilElsevier B.V.Universidade Federal do ABC (UFABC)Universidade Estadual Paulista (Unesp)Nogueira, A. A.Pimentel, B. M. [UNESP]Rabanal, L. [UNESP]2019-10-04T12:30:40Z2019-10-04T12:30:40Z2018-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article665-691http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024Nuclear Physics B. Amsterdam: Elsevier Science Bv, v. 934, p. 665-691, 2018.0550-3213http://hdl.handle.net/11449/18487110.1016/j.nuclphysb.2018.07.024WOS:000445497400029Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNuclear Physics Binfo:eu-repo/semantics/openAccess2021-10-23T14:26:50Zoai:repositorio.unesp.br:11449/184871Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T14:26:50Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
title Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
spellingShingle Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
Nogueira, A. A.
title_short Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
title_full Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
title_fullStr Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
title_full_unstemmed Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
title_sort Transition amplitude, partition function and the role of physical degrees of freedom in gauge theories
author Nogueira, A. A.
author_facet Nogueira, A. A.
Pimentel, B. M. [UNESP]
Rabanal, L. [UNESP]
author_role author
author2 Pimentel, B. M. [UNESP]
Rabanal, L. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal do ABC (UFABC)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Nogueira, A. A.
Pimentel, B. M. [UNESP]
Rabanal, L. [UNESP]
description This work explores the quantum dynamics of the interaction between scalar (matter) and vectorial (intermediate) particles and studies their thermodynamic equilibrium in the grand-canonical ensemble. The aim of the article is to clarify the connection between the physical degrees of freedom of a theory in both the quantization process and the description of the thermodynamic equilibrium, in which we see an intimate connection between physical degrees of freedom, Gibbs free energy and the equipartition theorem. We have split the work into two sections. First, we analyze the quantum interaction in the context of the generalized scalar Duffin-Kemmer-Petiau quantum electrodynamics (GSDKP) by using the functional formalism. We build the Hamiltonian structure following the Dirac methodology, apply the Faddeev-Senjanovic procedure to obtain the transition amplitude in the generalized Coulomb gauge and, finally, use the Faddeev-Popov-DeWitt method to write the amplitude in covariant form in the no-mixing gauge. Subsequently, we exclusively use the Matsubara-Fradkin (MF) formalism in order to describe fields in thermodynamical equilibrium. The corresponding equations in thermodynamic equilibrium for the scalar, vectorial and ghost sectors are explicitly constructed from which the extraction of the partition function is straightforward. It is in the construction of the vectorial sector that the emergence and importance of the ghost fields are revealed: they eliminate the extra non-physical degrees of freedom of the vectorial sector thus maintaining the physical degrees of freedom. (C) 2018 The Authors. Published by Elsevier B.V.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-01
2019-10-04T12:30:40Z
2019-10-04T12:30:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024
Nuclear Physics B. Amsterdam: Elsevier Science Bv, v. 934, p. 665-691, 2018.
0550-3213
http://hdl.handle.net/11449/184871
10.1016/j.nuclphysb.2018.07.024
WOS:000445497400029
url http://dx.doi.org/10.1016/j.nuclphysb.2018.07.024
http://hdl.handle.net/11449/184871
identifier_str_mv Nuclear Physics B. Amsterdam: Elsevier Science Bv, v. 934, p. 665-691, 2018.
0550-3213
10.1016/j.nuclphysb.2018.07.024
WOS:000445497400029
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nuclear Physics B
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 665-691
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803047214207991808