An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance

Detalhes bibliográficos
Autor(a) principal: Lucas, Thiago Jose [UNESP]
Data de Publicação: 2022
Outros Autores: Da Costa, Kelton A. Pontara [UNESP], Scherer, Rafal, Papa, Joao Paulo [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/SMC53654.2022.9945239
http://hdl.handle.net/11449/249410
Resumo: Machine learning techniques have achieved promising results in detecting attacks in computer networks, particularly ensemble learning methods, improving individual classifier's performance. This work focuses on building an ensemble of classifiers to minimize the computational cost to some extent. A diversity-driven pruning method was applied to create stackings using a combination of k-Nearest Neighbors, Decision Trees, Support Vector Machines, and Neural Networks, and validated on six differents datasets. An average accuracy of 99.94% and a reduction in the processing time of 97.34% are reported with heterogeneous ensembles, highlighting the robustness of the proposed approach.
id UNSP_e0a1722a3d2fa12a704f6e11a54c3f08
oai_identifier_str oai:repositorio.unesp.br:11449/249410
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performanceensemble learningensemble pruningintrusion detectionstackingMachine learning techniques have achieved promising results in detecting attacks in computer networks, particularly ensemble learning methods, improving individual classifier's performance. This work focuses on building an ensemble of classifiers to minimize the computational cost to some extent. A diversity-driven pruning method was applied to create stackings using a combination of k-Nearest Neighbors, Decision Trees, Support Vector Machines, and Neural Networks, and validated on six differents datasets. An average accuracy of 99.94% and a reduction in the processing time of 97.34% are reported with heterogeneous ensembles, highlighting the robustness of the proposed approach.São Paulo State University Department of ComputingCzestochowa University of TechnologySão Paulo State University Department of ComputingUniversidade Estadual Paulista (UNESP)Czestochowa University of TechnologyLucas, Thiago Jose [UNESP]Da Costa, Kelton A. Pontara [UNESP]Scherer, RafalPapa, Joao Paulo [UNESP]2023-07-29T15:15:20Z2023-07-29T15:15:20Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1173-1179http://dx.doi.org/10.1109/SMC53654.2022.9945239Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, v. 2022-October, p. 1173-1179.1062-922Xhttp://hdl.handle.net/11449/24941010.1109/SMC53654.2022.99452392-s2.0-85142755955Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengConference Proceedings - IEEE International Conference on Systems, Man and Cyberneticsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/249410Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:02:11.194396Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
title An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
spellingShingle An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
Lucas, Thiago Jose [UNESP]
ensemble learning
ensemble pruning
intrusion detection
stacking
title_short An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
title_full An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
title_fullStr An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
title_full_unstemmed An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
title_sort An Ensemble Pruning Approach to Optimize Intrusion Detection Systems Performance
author Lucas, Thiago Jose [UNESP]
author_facet Lucas, Thiago Jose [UNESP]
Da Costa, Kelton A. Pontara [UNESP]
Scherer, Rafal
Papa, Joao Paulo [UNESP]
author_role author
author2 Da Costa, Kelton A. Pontara [UNESP]
Scherer, Rafal
Papa, Joao Paulo [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Czestochowa University of Technology
dc.contributor.author.fl_str_mv Lucas, Thiago Jose [UNESP]
Da Costa, Kelton A. Pontara [UNESP]
Scherer, Rafal
Papa, Joao Paulo [UNESP]
dc.subject.por.fl_str_mv ensemble learning
ensemble pruning
intrusion detection
stacking
topic ensemble learning
ensemble pruning
intrusion detection
stacking
description Machine learning techniques have achieved promising results in detecting attacks in computer networks, particularly ensemble learning methods, improving individual classifier's performance. This work focuses on building an ensemble of classifiers to minimize the computational cost to some extent. A diversity-driven pruning method was applied to create stackings using a combination of k-Nearest Neighbors, Decision Trees, Support Vector Machines, and Neural Networks, and validated on six differents datasets. An average accuracy of 99.94% and a reduction in the processing time of 97.34% are reported with heterogeneous ensembles, highlighting the robustness of the proposed approach.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-07-29T15:15:20Z
2023-07-29T15:15:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SMC53654.2022.9945239
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, v. 2022-October, p. 1173-1179.
1062-922X
http://hdl.handle.net/11449/249410
10.1109/SMC53654.2022.9945239
2-s2.0-85142755955
url http://dx.doi.org/10.1109/SMC53654.2022.9945239
http://hdl.handle.net/11449/249410
identifier_str_mv Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, v. 2022-October, p. 1173-1179.
1062-922X
10.1109/SMC53654.2022.9945239
2-s2.0-85142755955
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1173-1179
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129152789774336