Additions of landscape metrics improve predictions of occurrence of species distribution models

Detalhes bibliográficos
Autor(a) principal: Hasui, Érica
Data de Publicação: 2017
Outros Autores: Silva, Vinícius X., Cunha, Rogério G. T., Ramos, Flavio N., Ribeiro, Milton C. [UNESP], Sacramento, Mario, Coelho, Marco T. P., Pereira, Diego G. S., Ribeiro, Bruno R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s11676-017-0388-5
http://hdl.handle.net/11449/174401
Resumo: Species distribution models are used to aid our understanding of the processes driving the spatial patterns of species’ habitats. This approach has received criticism, however, largely because it neglects landscape metrics. We examined the relative impacts of landscape predictors on the accuracy of habitat models by constructing distribution models at regional scales incorporating environmental variables (climate, topography, vegetation, and soil types) and secondary species occurrence data, and using them to predict the occurrence of 36 species in 15 forest fragments where we conducted rapid surveys. We then selected six landscape predictors at the landscape scale and ran general linear models of species presence/absence with either a single scale predictor (the probabilities of occurrence of the distribution models or landscape variables) or multiple scale predictors (distribution models + one landscape variable). Our results indicated that distribution models alone had poor predictive abilities but were improved when landscape predictors were added; the species responses were not, however, similar to the multiple scale predictors. Our study thus highlights the importance of considering landscape metrics to generate more accurate habitat suitability models.
id UNSP_e0b9a3f703939932feee37cf5517ecb5
oai_identifier_str oai:repositorio.unesp.br:11449/174401
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Additions of landscape metrics improve predictions of occurrence of species distribution modelsEcological niche modelGeneralized linear modelsHabitat suitabilityLandscape structureMaxentSpecies distribution models are used to aid our understanding of the processes driving the spatial patterns of species’ habitats. This approach has received criticism, however, largely because it neglects landscape metrics. We examined the relative impacts of landscape predictors on the accuracy of habitat models by constructing distribution models at regional scales incorporating environmental variables (climate, topography, vegetation, and soil types) and secondary species occurrence data, and using them to predict the occurrence of 36 species in 15 forest fragments where we conducted rapid surveys. We then selected six landscape predictors at the landscape scale and ran general linear models of species presence/absence with either a single scale predictor (the probabilities of occurrence of the distribution models or landscape variables) or multiple scale predictors (distribution models + one landscape variable). Our results indicated that distribution models alone had poor predictive abilities but were improved when landscape predictors were added; the species responses were not, however, similar to the multiple scale predictors. Our study thus highlights the importance of considering landscape metrics to generate more accurate habitat suitability models.Laboratório de Ecologia de Fragmentos Florestais (ECOFRAG) Instituto de Ciência da Natureza Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700Laboratório de Ecologia Espacial e Conservação (LEEC) Departamento de Ecologia UNESP, Rio Claro. Av. 24A, 1515Programa de Pós-Graduação em Ecologia e Evolução da Universidade Federal de Goiás Universidade Federal de GoiásDepartamento de Ciências Florestais Universidade Federal de Lavras, Câmpus Universitário, Caixa Postal 3037Estação de Hidrobiologia e Piscicultura de Furnas – EHPF, Rua Lavras, 288 Bairro de FurnasLaboratório de Ecologia Espacial e Conservação (LEEC) Departamento de Ecologia UNESP, Rio Claro. Av. 24A, 1515Universidade Federal de AlfenasUniversidade Estadual Paulista (Unesp)Universidade Federal de Goiás (UFG)Universidade Federal de Lavras (UFLA)Estação de Hidrobiologia e Piscicultura de Furnas – EHPFHasui, ÉricaSilva, Vinícius X.Cunha, Rogério G. T.Ramos, Flavio N.Ribeiro, Milton C. [UNESP]Sacramento, MarioCoelho, Marco T. P.Pereira, Diego G. S.Ribeiro, Bruno R.2018-12-11T17:10:56Z2018-12-11T17:10:56Z2017-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article963-974application/pdfhttp://dx.doi.org/10.1007/s11676-017-0388-5Journal of Forestry Research, v. 28, n. 5, p. 963-974, 2017.1993-06071007-662Xhttp://hdl.handle.net/11449/17440110.1007/s11676-017-0388-52-s2.0-850165606332-s2.0-85016560633.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Forestry Researchinfo:eu-repo/semantics/openAccess2023-11-07T06:14:46Zoai:repositorio.unesp.br:11449/174401Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:06:35.061245Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Additions of landscape metrics improve predictions of occurrence of species distribution models
title Additions of landscape metrics improve predictions of occurrence of species distribution models
spellingShingle Additions of landscape metrics improve predictions of occurrence of species distribution models
Hasui, Érica
Ecological niche model
Generalized linear models
Habitat suitability
Landscape structure
Maxent
title_short Additions of landscape metrics improve predictions of occurrence of species distribution models
title_full Additions of landscape metrics improve predictions of occurrence of species distribution models
title_fullStr Additions of landscape metrics improve predictions of occurrence of species distribution models
title_full_unstemmed Additions of landscape metrics improve predictions of occurrence of species distribution models
title_sort Additions of landscape metrics improve predictions of occurrence of species distribution models
author Hasui, Érica
author_facet Hasui, Érica
Silva, Vinícius X.
Cunha, Rogério G. T.
Ramos, Flavio N.
Ribeiro, Milton C. [UNESP]
Sacramento, Mario
Coelho, Marco T. P.
Pereira, Diego G. S.
Ribeiro, Bruno R.
author_role author
author2 Silva, Vinícius X.
Cunha, Rogério G. T.
Ramos, Flavio N.
Ribeiro, Milton C. [UNESP]
Sacramento, Mario
Coelho, Marco T. P.
Pereira, Diego G. S.
Ribeiro, Bruno R.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Alfenas
Universidade Estadual Paulista (Unesp)
Universidade Federal de Goiás (UFG)
Universidade Federal de Lavras (UFLA)
Estação de Hidrobiologia e Piscicultura de Furnas – EHPF
dc.contributor.author.fl_str_mv Hasui, Érica
Silva, Vinícius X.
Cunha, Rogério G. T.
Ramos, Flavio N.
Ribeiro, Milton C. [UNESP]
Sacramento, Mario
Coelho, Marco T. P.
Pereira, Diego G. S.
Ribeiro, Bruno R.
dc.subject.por.fl_str_mv Ecological niche model
Generalized linear models
Habitat suitability
Landscape structure
Maxent
topic Ecological niche model
Generalized linear models
Habitat suitability
Landscape structure
Maxent
description Species distribution models are used to aid our understanding of the processes driving the spatial patterns of species’ habitats. This approach has received criticism, however, largely because it neglects landscape metrics. We examined the relative impacts of landscape predictors on the accuracy of habitat models by constructing distribution models at regional scales incorporating environmental variables (climate, topography, vegetation, and soil types) and secondary species occurrence data, and using them to predict the occurrence of 36 species in 15 forest fragments where we conducted rapid surveys. We then selected six landscape predictors at the landscape scale and ran general linear models of species presence/absence with either a single scale predictor (the probabilities of occurrence of the distribution models or landscape variables) or multiple scale predictors (distribution models + one landscape variable). Our results indicated that distribution models alone had poor predictive abilities but were improved when landscape predictors were added; the species responses were not, however, similar to the multiple scale predictors. Our study thus highlights the importance of considering landscape metrics to generate more accurate habitat suitability models.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-01
2018-12-11T17:10:56Z
2018-12-11T17:10:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11676-017-0388-5
Journal of Forestry Research, v. 28, n. 5, p. 963-974, 2017.
1993-0607
1007-662X
http://hdl.handle.net/11449/174401
10.1007/s11676-017-0388-5
2-s2.0-85016560633
2-s2.0-85016560633.pdf
url http://dx.doi.org/10.1007/s11676-017-0388-5
http://hdl.handle.net/11449/174401
identifier_str_mv Journal of Forestry Research, v. 28, n. 5, p. 963-974, 2017.
1993-0607
1007-662X
10.1007/s11676-017-0388-5
2-s2.0-85016560633
2-s2.0-85016560633.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Forestry Research
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 963-974
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128756571701248