Additions of landscape metrics improve predictions of occurrence of species distribution models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s11676-017-0388-5 http://hdl.handle.net/11449/174401 |
Resumo: | Species distribution models are used to aid our understanding of the processes driving the spatial patterns of species’ habitats. This approach has received criticism, however, largely because it neglects landscape metrics. We examined the relative impacts of landscape predictors on the accuracy of habitat models by constructing distribution models at regional scales incorporating environmental variables (climate, topography, vegetation, and soil types) and secondary species occurrence data, and using them to predict the occurrence of 36 species in 15 forest fragments where we conducted rapid surveys. We then selected six landscape predictors at the landscape scale and ran general linear models of species presence/absence with either a single scale predictor (the probabilities of occurrence of the distribution models or landscape variables) or multiple scale predictors (distribution models + one landscape variable). Our results indicated that distribution models alone had poor predictive abilities but were improved when landscape predictors were added; the species responses were not, however, similar to the multiple scale predictors. Our study thus highlights the importance of considering landscape metrics to generate more accurate habitat suitability models. |
id |
UNSP_e0b9a3f703939932feee37cf5517ecb5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/174401 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Additions of landscape metrics improve predictions of occurrence of species distribution modelsEcological niche modelGeneralized linear modelsHabitat suitabilityLandscape structureMaxentSpecies distribution models are used to aid our understanding of the processes driving the spatial patterns of species’ habitats. This approach has received criticism, however, largely because it neglects landscape metrics. We examined the relative impacts of landscape predictors on the accuracy of habitat models by constructing distribution models at regional scales incorporating environmental variables (climate, topography, vegetation, and soil types) and secondary species occurrence data, and using them to predict the occurrence of 36 species in 15 forest fragments where we conducted rapid surveys. We then selected six landscape predictors at the landscape scale and ran general linear models of species presence/absence with either a single scale predictor (the probabilities of occurrence of the distribution models or landscape variables) or multiple scale predictors (distribution models + one landscape variable). Our results indicated that distribution models alone had poor predictive abilities but were improved when landscape predictors were added; the species responses were not, however, similar to the multiple scale predictors. Our study thus highlights the importance of considering landscape metrics to generate more accurate habitat suitability models.Laboratório de Ecologia de Fragmentos Florestais (ECOFRAG) Instituto de Ciência da Natureza Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700Laboratório de Ecologia Espacial e Conservação (LEEC) Departamento de Ecologia UNESP, Rio Claro. Av. 24A, 1515Programa de Pós-Graduação em Ecologia e Evolução da Universidade Federal de Goiás Universidade Federal de GoiásDepartamento de Ciências Florestais Universidade Federal de Lavras, Câmpus Universitário, Caixa Postal 3037Estação de Hidrobiologia e Piscicultura de Furnas – EHPF, Rua Lavras, 288 Bairro de FurnasLaboratório de Ecologia Espacial e Conservação (LEEC) Departamento de Ecologia UNESP, Rio Claro. Av. 24A, 1515Universidade Federal de AlfenasUniversidade Estadual Paulista (Unesp)Universidade Federal de Goiás (UFG)Universidade Federal de Lavras (UFLA)Estação de Hidrobiologia e Piscicultura de Furnas – EHPFHasui, ÉricaSilva, Vinícius X.Cunha, Rogério G. T.Ramos, Flavio N.Ribeiro, Milton C. [UNESP]Sacramento, MarioCoelho, Marco T. P.Pereira, Diego G. S.Ribeiro, Bruno R.2018-12-11T17:10:56Z2018-12-11T17:10:56Z2017-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article963-974application/pdfhttp://dx.doi.org/10.1007/s11676-017-0388-5Journal of Forestry Research, v. 28, n. 5, p. 963-974, 2017.1993-06071007-662Xhttp://hdl.handle.net/11449/17440110.1007/s11676-017-0388-52-s2.0-850165606332-s2.0-85016560633.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Forestry Researchinfo:eu-repo/semantics/openAccess2023-11-07T06:14:46Zoai:repositorio.unesp.br:11449/174401Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:06:35.061245Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Additions of landscape metrics improve predictions of occurrence of species distribution models |
title |
Additions of landscape metrics improve predictions of occurrence of species distribution models |
spellingShingle |
Additions of landscape metrics improve predictions of occurrence of species distribution models Hasui, Érica Ecological niche model Generalized linear models Habitat suitability Landscape structure Maxent |
title_short |
Additions of landscape metrics improve predictions of occurrence of species distribution models |
title_full |
Additions of landscape metrics improve predictions of occurrence of species distribution models |
title_fullStr |
Additions of landscape metrics improve predictions of occurrence of species distribution models |
title_full_unstemmed |
Additions of landscape metrics improve predictions of occurrence of species distribution models |
title_sort |
Additions of landscape metrics improve predictions of occurrence of species distribution models |
author |
Hasui, Érica |
author_facet |
Hasui, Érica Silva, Vinícius X. Cunha, Rogério G. T. Ramos, Flavio N. Ribeiro, Milton C. [UNESP] Sacramento, Mario Coelho, Marco T. P. Pereira, Diego G. S. Ribeiro, Bruno R. |
author_role |
author |
author2 |
Silva, Vinícius X. Cunha, Rogério G. T. Ramos, Flavio N. Ribeiro, Milton C. [UNESP] Sacramento, Mario Coelho, Marco T. P. Pereira, Diego G. S. Ribeiro, Bruno R. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Alfenas Universidade Estadual Paulista (Unesp) Universidade Federal de Goiás (UFG) Universidade Federal de Lavras (UFLA) Estação de Hidrobiologia e Piscicultura de Furnas – EHPF |
dc.contributor.author.fl_str_mv |
Hasui, Érica Silva, Vinícius X. Cunha, Rogério G. T. Ramos, Flavio N. Ribeiro, Milton C. [UNESP] Sacramento, Mario Coelho, Marco T. P. Pereira, Diego G. S. Ribeiro, Bruno R. |
dc.subject.por.fl_str_mv |
Ecological niche model Generalized linear models Habitat suitability Landscape structure Maxent |
topic |
Ecological niche model Generalized linear models Habitat suitability Landscape structure Maxent |
description |
Species distribution models are used to aid our understanding of the processes driving the spatial patterns of species’ habitats. This approach has received criticism, however, largely because it neglects landscape metrics. We examined the relative impacts of landscape predictors on the accuracy of habitat models by constructing distribution models at regional scales incorporating environmental variables (climate, topography, vegetation, and soil types) and secondary species occurrence data, and using them to predict the occurrence of 36 species in 15 forest fragments where we conducted rapid surveys. We then selected six landscape predictors at the landscape scale and ran general linear models of species presence/absence with either a single scale predictor (the probabilities of occurrence of the distribution models or landscape variables) or multiple scale predictors (distribution models + one landscape variable). Our results indicated that distribution models alone had poor predictive abilities but were improved when landscape predictors were added; the species responses were not, however, similar to the multiple scale predictors. Our study thus highlights the importance of considering landscape metrics to generate more accurate habitat suitability models. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-01 2018-12-11T17:10:56Z 2018-12-11T17:10:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11676-017-0388-5 Journal of Forestry Research, v. 28, n. 5, p. 963-974, 2017. 1993-0607 1007-662X http://hdl.handle.net/11449/174401 10.1007/s11676-017-0388-5 2-s2.0-85016560633 2-s2.0-85016560633.pdf |
url |
http://dx.doi.org/10.1007/s11676-017-0388-5 http://hdl.handle.net/11449/174401 |
identifier_str_mv |
Journal of Forestry Research, v. 28, n. 5, p. 963-974, 2017. 1993-0607 1007-662X 10.1007/s11676-017-0388-5 2-s2.0-85016560633 2-s2.0-85016560633.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Forestry Research |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
963-974 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128756571701248 |