Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/132419 |
Resumo: | Companies go to great lengths to improve its processes and products according to different criteria to meet the demands and needs of customers looking for a higher standard of competitiveness to that of their competitors. This scenario is very common the need to establish conditions that result in the improvement of more than one criterion simultaneously. This work was carried out an evaluation of the use of four methods that use Metaheuristics Simulated Annealing, Genetic Algorithms, Simulated Annealing combined with the Nelder Mead Simplex method and genetic algorithm combined with Nelde Mead simplex method for the improvement of establishing the conditions of processes with multiple answers. For the evaluation of the proposed test methods were used in the literature problems carefully selected in order to be analyzed cases with different numbers of variables, response numbers and types of responses. In this research we used the average percentage deviation function as a way to bring together the answers. The agglutination of the answers was performed by four different methods: Desirability, Average Percentage Deviation, Compromise Programming and Compromise Programming normalized by Euclidean distance. The evaluation method was performed by comparison between the results obtained in using the same bonding method, thereby determining the efficiency of the search method. The results obtained in the evaluation of the methods suggest the application of the genetic algorithm method when you want to set parameters that result in the improvement of processes with multiple answers, particularly when these responses are modeled by equations with cubic terms, regardless of the number of terms that can contain the type of responses and the number of variables. |
id |
UNSP_e308e4abb11e237d68957abab8f98fec |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/132419 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostasDifferent agglutination methods for optmize a process whit multiple responsesDesirabilityNelder mead simplexMeta-heuristicsDesign of experimentsDesirability and generalized reduced gradient.Simulated annealingGenetic algorithmMeta-heurísticaPlanejamento de experimentosProcessos com múltiplas respostasAlgoritmo genéticoRecozimento simuladoGradiente reduzido generalizadoCompanies go to great lengths to improve its processes and products according to different criteria to meet the demands and needs of customers looking for a higher standard of competitiveness to that of their competitors. This scenario is very common the need to establish conditions that result in the improvement of more than one criterion simultaneously. This work was carried out an evaluation of the use of four methods that use Metaheuristics Simulated Annealing, Genetic Algorithms, Simulated Annealing combined with the Nelder Mead Simplex method and genetic algorithm combined with Nelde Mead simplex method for the improvement of establishing the conditions of processes with multiple answers. For the evaluation of the proposed test methods were used in the literature problems carefully selected in order to be analyzed cases with different numbers of variables, response numbers and types of responses. In this research we used the average percentage deviation function as a way to bring together the answers. The agglutination of the answers was performed by four different methods: Desirability, Average Percentage Deviation, Compromise Programming and Compromise Programming normalized by Euclidean distance. The evaluation method was performed by comparison between the results obtained in using the same bonding method, thereby determining the efficiency of the search method. The results obtained in the evaluation of the methods suggest the application of the genetic algorithm method when you want to set parameters that result in the improvement of processes with multiple answers, particularly when these responses are modeled by equations with cubic terms, regardless of the number of terms that can contain the type of responses and the number of variables.Empresas não medem esforços para aperfeiçoar seus processos e produtos de acordo com diferentes critérios para satisfazer as exigências e necessidades dos clientes em busca de um padrão de competitividade superior ao de suas concorrentes. Neste cenário é muito comum a necessidade de se estabelecer condições que resultem na melhoria de mais de um critério de forma simultânea. Neste trabalho foi realizada uma avaliação da utilização de quatro métodos que utilizam as Meta-heurísticas Recozimento Simulado, Algoritmo Genético, Recozimento Simulado combinado com o método Nelder Mead Simplex e algoritmo genético combinado com o método Nelde-Mead simplex para o estabelecimento de melhoria das condições de processos com múltiplas respostas. Para a avaliação dos métodos propostos foram utilizados problemas-teste criteriosamente selecionados na literatura de forma a serem analisados casos com diferente número de variáveis, número de respostas e tipos de resposta. A aglutinação das respostas foi realizada por quatro métodos diferentes: Desirability, Desvio Médio Percentual, Programação por Compromisso e Programação por Compromisso normalizada pela distância euclidiana. A avaliação dos métodos foi realizada por meio de comparação entre os resultados obtidos na utilização de um mesmo método de aglutinação, determinando assim a eficiência do método de busca. Os resultados obtidos na avaliação dos métodos sugerem a aplicação do método do algoritmo genético quando se pretende estabelecer parâmetros que resultem na melhoria de processos com múltiplas respostas, em particular quando essas respostas são modeladas por equações com termos cúbicos, independentemente do número de termos que possam conter, do tipo de respostas e do número de variáveis.Universidade Estadual Paulista (Unesp)Silva, Messias Borges [UNESP]Marins, Fernando Augusto Silva [UNESP]Universidade Estadual Paulista (Unesp)Gomes, Fabrício Maciel [UNESP]2016-01-06T16:12:19Z2016-01-06T16:12:19Z2015-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/13241900086371833004080027P695076558032342619008186664173955porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T13:33:35Zoai:repositorio.unesp.br:11449/132419Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:38:43.717971Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas Different agglutination methods for optmize a process whit multiple responses |
title |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas |
spellingShingle |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas Gomes, Fabrício Maciel [UNESP] Desirability Nelder mead simplex Meta-heuristics Design of experiments Desirability and generalized reduced gradient. Simulated annealing Genetic algorithm Meta-heurística Planejamento de experimentos Processos com múltiplas respostas Algoritmo genético Recozimento simulado Gradiente reduzido generalizado |
title_short |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas |
title_full |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas |
title_fullStr |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas |
title_full_unstemmed |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas |
title_sort |
Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas |
author |
Gomes, Fabrício Maciel [UNESP] |
author_facet |
Gomes, Fabrício Maciel [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Messias Borges [UNESP] Marins, Fernando Augusto Silva [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Gomes, Fabrício Maciel [UNESP] |
dc.subject.por.fl_str_mv |
Desirability Nelder mead simplex Meta-heuristics Design of experiments Desirability and generalized reduced gradient. Simulated annealing Genetic algorithm Meta-heurística Planejamento de experimentos Processos com múltiplas respostas Algoritmo genético Recozimento simulado Gradiente reduzido generalizado |
topic |
Desirability Nelder mead simplex Meta-heuristics Design of experiments Desirability and generalized reduced gradient. Simulated annealing Genetic algorithm Meta-heurística Planejamento de experimentos Processos com múltiplas respostas Algoritmo genético Recozimento simulado Gradiente reduzido generalizado |
description |
Companies go to great lengths to improve its processes and products according to different criteria to meet the demands and needs of customers looking for a higher standard of competitiveness to that of their competitors. This scenario is very common the need to establish conditions that result in the improvement of more than one criterion simultaneously. This work was carried out an evaluation of the use of four methods that use Metaheuristics Simulated Annealing, Genetic Algorithms, Simulated Annealing combined with the Nelder Mead Simplex method and genetic algorithm combined with Nelde Mead simplex method for the improvement of establishing the conditions of processes with multiple answers. For the evaluation of the proposed test methods were used in the literature problems carefully selected in order to be analyzed cases with different numbers of variables, response numbers and types of responses. In this research we used the average percentage deviation function as a way to bring together the answers. The agglutination of the answers was performed by four different methods: Desirability, Average Percentage Deviation, Compromise Programming and Compromise Programming normalized by Euclidean distance. The evaluation method was performed by comparison between the results obtained in using the same bonding method, thereby determining the efficiency of the search method. The results obtained in the evaluation of the methods suggest the application of the genetic algorithm method when you want to set parameters that result in the improvement of processes with multiple answers, particularly when these responses are modeled by equations with cubic terms, regardless of the number of terms that can contain the type of responses and the number of variables. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-15 2016-01-06T16:12:19Z 2016-01-06T16:12:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/132419 000863718 33004080027P6 9507655803234261 9008186664173955 |
url |
http://hdl.handle.net/11449/132419 |
identifier_str_mv |
000863718 33004080027P6 9507655803234261 9008186664173955 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129446063898624 |