Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas

Detalhes bibliográficos
Autor(a) principal: Gomes, Fabrício Maciel [UNESP]
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/132419
Resumo: Companies go to great lengths to improve its processes and products according to different criteria to meet the demands and needs of customers looking for a higher standard of competitiveness to that of their competitors. This scenario is very common the need to establish conditions that result in the improvement of more than one criterion simultaneously. This work was carried out an evaluation of the use of four methods that use Metaheuristics Simulated Annealing, Genetic Algorithms, Simulated Annealing combined with the Nelder Mead Simplex method and genetic algorithm combined with Nelde Mead simplex method for the improvement of establishing the conditions of processes with multiple answers. For the evaluation of the proposed test methods were used in the literature problems carefully selected in order to be analyzed cases with different numbers of variables, response numbers and types of responses. In this research we used the average percentage deviation function as a way to bring together the answers. The agglutination of the answers was performed by four different methods: Desirability, Average Percentage Deviation, Compromise Programming and Compromise Programming normalized by Euclidean distance. The evaluation method was performed by comparison between the results obtained in using the same bonding method, thereby determining the efficiency of the search method. The results obtained in the evaluation of the methods suggest the application of the genetic algorithm method when you want to set parameters that result in the improvement of processes with multiple answers, particularly when these responses are modeled by equations with cubic terms, regardless of the number of terms that can contain the type of responses and the number of variables.
id UNSP_e308e4abb11e237d68957abab8f98fec
oai_identifier_str oai:repositorio.unesp.br:11449/132419
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostasDifferent agglutination methods for optmize a process whit multiple responsesDesirabilityNelder mead simplexMeta-heuristicsDesign of experimentsDesirability and generalized reduced gradient.Simulated annealingGenetic algorithmMeta-heurísticaPlanejamento de experimentosProcessos com múltiplas respostasAlgoritmo genéticoRecozimento simuladoGradiente reduzido generalizadoCompanies go to great lengths to improve its processes and products according to different criteria to meet the demands and needs of customers looking for a higher standard of competitiveness to that of their competitors. This scenario is very common the need to establish conditions that result in the improvement of more than one criterion simultaneously. This work was carried out an evaluation of the use of four methods that use Metaheuristics Simulated Annealing, Genetic Algorithms, Simulated Annealing combined with the Nelder Mead Simplex method and genetic algorithm combined with Nelde Mead simplex method for the improvement of establishing the conditions of processes with multiple answers. For the evaluation of the proposed test methods were used in the literature problems carefully selected in order to be analyzed cases with different numbers of variables, response numbers and types of responses. In this research we used the average percentage deviation function as a way to bring together the answers. The agglutination of the answers was performed by four different methods: Desirability, Average Percentage Deviation, Compromise Programming and Compromise Programming normalized by Euclidean distance. The evaluation method was performed by comparison between the results obtained in using the same bonding method, thereby determining the efficiency of the search method. The results obtained in the evaluation of the methods suggest the application of the genetic algorithm method when you want to set parameters that result in the improvement of processes with multiple answers, particularly when these responses are modeled by equations with cubic terms, regardless of the number of terms that can contain the type of responses and the number of variables.Empresas não medem esforços para aperfeiçoar seus processos e produtos de acordo com diferentes critérios para satisfazer as exigências e necessidades dos clientes em busca de um padrão de competitividade superior ao de suas concorrentes. Neste cenário é muito comum a necessidade de se estabelecer condições que resultem na melhoria de mais de um critério de forma simultânea. Neste trabalho foi realizada uma avaliação da utilização de quatro métodos que utilizam as Meta-heurísticas Recozimento Simulado, Algoritmo Genético, Recozimento Simulado combinado com o método Nelder Mead Simplex e algoritmo genético combinado com o método Nelde-Mead simplex para o estabelecimento de melhoria das condições de processos com múltiplas respostas. Para a avaliação dos métodos propostos foram utilizados problemas-teste criteriosamente selecionados na literatura de forma a serem analisados casos com diferente número de variáveis, número de respostas e tipos de resposta. A aglutinação das respostas foi realizada por quatro métodos diferentes: Desirability, Desvio Médio Percentual, Programação por Compromisso e Programação por Compromisso normalizada pela distância euclidiana. A avaliação dos métodos foi realizada por meio de comparação entre os resultados obtidos na utilização de um mesmo método de aglutinação, determinando assim a eficiência do método de busca. Os resultados obtidos na avaliação dos métodos sugerem a aplicação do método do algoritmo genético quando se pretende estabelecer parâmetros que resultem na melhoria de processos com múltiplas respostas, em particular quando essas respostas são modeladas por equações com termos cúbicos, independentemente do número de termos que possam conter, do tipo de respostas e do número de variáveis.Universidade Estadual Paulista (Unesp)Silva, Messias Borges [UNESP]Marins, Fernando Augusto Silva [UNESP]Universidade Estadual Paulista (Unesp)Gomes, Fabrício Maciel [UNESP]2016-01-06T16:12:19Z2016-01-06T16:12:19Z2015-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/13241900086371833004080027P695076558032342619008186664173955porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T13:33:35Zoai:repositorio.unesp.br:11449/132419Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:38:43.717971Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
Different agglutination methods for optmize a process whit multiple responses
title Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
spellingShingle Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
Gomes, Fabrício Maciel [UNESP]
Desirability
Nelder mead simplex
Meta-heuristics
Design of experiments
Desirability and generalized reduced gradient.
Simulated annealing
Genetic algorithm
Meta-heurística
Planejamento de experimentos
Processos com múltiplas respostas
Algoritmo genético
Recozimento simulado
Gradiente reduzido generalizado
title_short Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
title_full Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
title_fullStr Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
title_full_unstemmed Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
title_sort Diferentes métodos de aglutinação para melhoria de processos com múltiplas respostas
author Gomes, Fabrício Maciel [UNESP]
author_facet Gomes, Fabrício Maciel [UNESP]
author_role author
dc.contributor.none.fl_str_mv Silva, Messias Borges [UNESP]
Marins, Fernando Augusto Silva [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Gomes, Fabrício Maciel [UNESP]
dc.subject.por.fl_str_mv Desirability
Nelder mead simplex
Meta-heuristics
Design of experiments
Desirability and generalized reduced gradient.
Simulated annealing
Genetic algorithm
Meta-heurística
Planejamento de experimentos
Processos com múltiplas respostas
Algoritmo genético
Recozimento simulado
Gradiente reduzido generalizado
topic Desirability
Nelder mead simplex
Meta-heuristics
Design of experiments
Desirability and generalized reduced gradient.
Simulated annealing
Genetic algorithm
Meta-heurística
Planejamento de experimentos
Processos com múltiplas respostas
Algoritmo genético
Recozimento simulado
Gradiente reduzido generalizado
description Companies go to great lengths to improve its processes and products according to different criteria to meet the demands and needs of customers looking for a higher standard of competitiveness to that of their competitors. This scenario is very common the need to establish conditions that result in the improvement of more than one criterion simultaneously. This work was carried out an evaluation of the use of four methods that use Metaheuristics Simulated Annealing, Genetic Algorithms, Simulated Annealing combined with the Nelder Mead Simplex method and genetic algorithm combined with Nelde Mead simplex method for the improvement of establishing the conditions of processes with multiple answers. For the evaluation of the proposed test methods were used in the literature problems carefully selected in order to be analyzed cases with different numbers of variables, response numbers and types of responses. In this research we used the average percentage deviation function as a way to bring together the answers. The agglutination of the answers was performed by four different methods: Desirability, Average Percentage Deviation, Compromise Programming and Compromise Programming normalized by Euclidean distance. The evaluation method was performed by comparison between the results obtained in using the same bonding method, thereby determining the efficiency of the search method. The results obtained in the evaluation of the methods suggest the application of the genetic algorithm method when you want to set parameters that result in the improvement of processes with multiple answers, particularly when these responses are modeled by equations with cubic terms, regardless of the number of terms that can contain the type of responses and the number of variables.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-15
2016-01-06T16:12:19Z
2016-01-06T16:12:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/132419
000863718
33004080027P6
9507655803234261
9008186664173955
url http://hdl.handle.net/11449/132419
identifier_str_mv 000863718
33004080027P6
9507655803234261
9008186664173955
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129446063898624