Robust automated cardiac arrhythmia detection in ECG beat signals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00521-016-2472-8 http://hdl.handle.net/11449/165987 |
Resumo: | Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases. |
id |
UNSP_e3a6b74b6ac8bc753fb50eef76716d63 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/165987 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Robust automated cardiac arrhythmia detection in ECG beat signalsECG heart beatsElectrophysiological signalsCardiac dysrhythmia classificationFeature extractionPattern recognitionOptimum-path forestNowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Science and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)''Univ Fortaleza, Programa Posgrad Informat Aplicada, Lab Bioinformat, Fortaleza, CE, BrazilUniv Fortaleza, Ctr Ciencias Tecnol, Fortaleza, CE, BrazilUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, BrazilUniv Fed Parana, Dept Informat, Curitiba, PR, BrazilUniv Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Oporto, PortugalUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, BrazilCNPq: 470501/2013-8CNPq: 301928/2014-2CNPq: 306166/2014-3CNPq: 470571/2013-6FAPESP: 2014/16250-9Science and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)'': NORTE-01-0145-FEDER-000022-SciTechSpringerUniv FortalezaUniversidade Estadual Paulista (Unesp)Univ Fed Ouro PretoUniv Fed ParanaUniv PortoAlbuquerque, Victor Hugo C. deNunes, Thiago M.Pereira, Danillo R. [UNESP]Luz, Eduardo Jose da S.Menotti, DavidPapa, Joao P. [UNESP]Tavares, Joao Manuel R. S.2018-11-29T06:59:17Z2018-11-29T06:59:17Z2018-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article679-693application/pdfhttp://dx.doi.org/10.1007/s00521-016-2472-8Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018.0941-0643http://hdl.handle.net/11449/16598710.1007/s00521-016-2472-8WOS:000424058500005WOS000424058500005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNeural Computing & Applicationsinfo:eu-repo/semantics/openAccess2024-04-23T16:10:43Zoai:repositorio.unesp.br:11449/165987Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:31:35.092864Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title |
Robust automated cardiac arrhythmia detection in ECG beat signals |
spellingShingle |
Robust automated cardiac arrhythmia detection in ECG beat signals Albuquerque, Victor Hugo C. de ECG heart beats Electrophysiological signals Cardiac dysrhythmia classification Feature extraction Pattern recognition Optimum-path forest |
title_short |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_full |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_fullStr |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_full_unstemmed |
Robust automated cardiac arrhythmia detection in ECG beat signals |
title_sort |
Robust automated cardiac arrhythmia detection in ECG beat signals |
author |
Albuquerque, Victor Hugo C. de |
author_facet |
Albuquerque, Victor Hugo C. de Nunes, Thiago M. Pereira, Danillo R. [UNESP] Luz, Eduardo Jose da S. Menotti, David Papa, Joao P. [UNESP] Tavares, Joao Manuel R. S. |
author_role |
author |
author2 |
Nunes, Thiago M. Pereira, Danillo R. [UNESP] Luz, Eduardo Jose da S. Menotti, David Papa, Joao P. [UNESP] Tavares, Joao Manuel R. S. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Fortaleza Universidade Estadual Paulista (Unesp) Univ Fed Ouro Preto Univ Fed Parana Univ Porto |
dc.contributor.author.fl_str_mv |
Albuquerque, Victor Hugo C. de Nunes, Thiago M. Pereira, Danillo R. [UNESP] Luz, Eduardo Jose da S. Menotti, David Papa, Joao P. [UNESP] Tavares, Joao Manuel R. S. |
dc.subject.por.fl_str_mv |
ECG heart beats Electrophysiological signals Cardiac dysrhythmia classification Feature extraction Pattern recognition Optimum-path forest |
topic |
ECG heart beats Electrophysiological signals Cardiac dysrhythmia classification Feature extraction Pattern recognition Optimum-path forest |
description |
Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-29T06:59:17Z 2018-11-29T06:59:17Z 2018-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00521-016-2472-8 Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018. 0941-0643 http://hdl.handle.net/11449/165987 10.1007/s00521-016-2472-8 WOS:000424058500005 WOS000424058500005.pdf |
url |
http://dx.doi.org/10.1007/s00521-016-2472-8 http://hdl.handle.net/11449/165987 |
identifier_str_mv |
Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018. 0941-0643 10.1007/s00521-016-2472-8 WOS:000424058500005 WOS000424058500005.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Neural Computing & Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
679-693 application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128373751283712 |