Robust automated cardiac arrhythmia detection in ECG beat signals

Detalhes bibliográficos
Autor(a) principal: Albuquerque, Victor Hugo C. de
Data de Publicação: 2018
Outros Autores: Nunes, Thiago M., Pereira, Danillo R. [UNESP], Luz, Eduardo Jose da S., Menotti, David, Papa, Joao P. [UNESP], Tavares, Joao Manuel R. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00521-016-2472-8
http://hdl.handle.net/11449/165987
Resumo: Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.
id UNSP_e3a6b74b6ac8bc753fb50eef76716d63
oai_identifier_str oai:repositorio.unesp.br:11449/165987
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Robust automated cardiac arrhythmia detection in ECG beat signalsECG heart beatsElectrophysiological signalsCardiac dysrhythmia classificationFeature extractionPattern recognitionOptimum-path forestNowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Science and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)''Univ Fortaleza, Programa Posgrad Informat Aplicada, Lab Bioinformat, Fortaleza, CE, BrazilUniv Fortaleza, Ctr Ciencias Tecnol, Fortaleza, CE, BrazilUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, BrazilUniv Fed Parana, Dept Informat, Curitiba, PR, BrazilUniv Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Oporto, PortugalUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, BrazilCNPq: 470501/2013-8CNPq: 301928/2014-2CNPq: 306166/2014-3CNPq: 470571/2013-6FAPESP: 2014/16250-9Science and Technology for Competitive and Sustainable Industries - Programa Operacional Regional do Norte (NORTE)'' through Fundo Europeu de Desenvolvimento Regional (FEDER)'': NORTE-01-0145-FEDER-000022-SciTechSpringerUniv FortalezaUniversidade Estadual Paulista (Unesp)Univ Fed Ouro PretoUniv Fed ParanaUniv PortoAlbuquerque, Victor Hugo C. deNunes, Thiago M.Pereira, Danillo R. [UNESP]Luz, Eduardo Jose da S.Menotti, DavidPapa, Joao P. [UNESP]Tavares, Joao Manuel R. S.2018-11-29T06:59:17Z2018-11-29T06:59:17Z2018-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article679-693application/pdfhttp://dx.doi.org/10.1007/s00521-016-2472-8Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018.0941-0643http://hdl.handle.net/11449/16598710.1007/s00521-016-2472-8WOS:000424058500005WOS000424058500005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNeural Computing & Applicationsinfo:eu-repo/semantics/openAccess2024-04-23T16:10:43Zoai:repositorio.unesp.br:11449/165987Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:31:35.092864Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Robust automated cardiac arrhythmia detection in ECG beat signals
title Robust automated cardiac arrhythmia detection in ECG beat signals
spellingShingle Robust automated cardiac arrhythmia detection in ECG beat signals
Albuquerque, Victor Hugo C. de
ECG heart beats
Electrophysiological signals
Cardiac dysrhythmia classification
Feature extraction
Pattern recognition
Optimum-path forest
title_short Robust automated cardiac arrhythmia detection in ECG beat signals
title_full Robust automated cardiac arrhythmia detection in ECG beat signals
title_fullStr Robust automated cardiac arrhythmia detection in ECG beat signals
title_full_unstemmed Robust automated cardiac arrhythmia detection in ECG beat signals
title_sort Robust automated cardiac arrhythmia detection in ECG beat signals
author Albuquerque, Victor Hugo C. de
author_facet Albuquerque, Victor Hugo C. de
Nunes, Thiago M.
Pereira, Danillo R. [UNESP]
Luz, Eduardo Jose da S.
Menotti, David
Papa, Joao P. [UNESP]
Tavares, Joao Manuel R. S.
author_role author
author2 Nunes, Thiago M.
Pereira, Danillo R. [UNESP]
Luz, Eduardo Jose da S.
Menotti, David
Papa, Joao P. [UNESP]
Tavares, Joao Manuel R. S.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Fortaleza
Universidade Estadual Paulista (Unesp)
Univ Fed Ouro Preto
Univ Fed Parana
Univ Porto
dc.contributor.author.fl_str_mv Albuquerque, Victor Hugo C. de
Nunes, Thiago M.
Pereira, Danillo R. [UNESP]
Luz, Eduardo Jose da S.
Menotti, David
Papa, Joao P. [UNESP]
Tavares, Joao Manuel R. S.
dc.subject.por.fl_str_mv ECG heart beats
Electrophysiological signals
Cardiac dysrhythmia classification
Feature extraction
Pattern recognition
Optimum-path forest
topic ECG heart beats
Electrophysiological signals
Cardiac dysrhythmia classification
Feature extraction
Pattern recognition
Optimum-path forest
description Nowadays, millions of people are affected by heart diseases worldwide, whereas a considerable amount of them could be aided through an electrocardiogram (ECG) trace analysis, which involves the study of arrhythmia impacts on electrocardiogram patterns. In this work, we carried out the task of automatic arrhythmia detection in ECG patterns by means of supervised machine learning techniques, being the main contribution of this paper to introduce the optimum-path forest (OPF) classifier to this context. We compared six distance metrics, six feature extraction algorithms and three classifiers in two variations of the same dataset, being the performance of the techniques compared in terms of effectiveness and efficiency. Although OPF revealed a higher skill on generalizing data, the support vector machines (SVM)-based classifier presented the highest accuracy. However, OPF shown to be more efficient than SVM in terms of the computational time for both training and test phases.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-29T06:59:17Z
2018-11-29T06:59:17Z
2018-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00521-016-2472-8
Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018.
0941-0643
http://hdl.handle.net/11449/165987
10.1007/s00521-016-2472-8
WOS:000424058500005
WOS000424058500005.pdf
url http://dx.doi.org/10.1007/s00521-016-2472-8
http://hdl.handle.net/11449/165987
identifier_str_mv Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 679-693, 2018.
0941-0643
10.1007/s00521-016-2472-8
WOS:000424058500005
WOS000424058500005.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Neural Computing & Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 679-693
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128373751283712