Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/231915 |
Resumo: | GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series. |
id |
UNSP_e44c1ee67d72e350cb07d9d5eb188433 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/231915 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonaisTime series analysis of coordinates estimated with GPS: A methodological approach to detect, remove and recover seasonal effectsGPS active networksLeast square methodPrecise point positioningSeasonal effectsWaveletsGPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.Universidade Estadual Paulista - UNESP, Rua Roberto Simonsen, 305, Caixa Postal 467, CEP 19060-900, Presidente Prudente, SPUniversidade Estadual Paulista - UNESP, Rua Roberto Simonsen, 305, Caixa Postal 467, CEP 19060-900, Presidente Prudente, SPUniversidade Estadual Paulista (UNESP)Rosa, Guilherme Poleszuk dos Santos [UNESP]Monico, João Francisco Galera [UNESP]Chaves, João Carlos [UNESP]2022-04-29T08:48:11Z2022-04-29T08:48:11Z2010-04-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article51-72Boletim de Ciencias Geodesicas, v. 16, n. 1, p. 51-72, 2010.1413-4853http://hdl.handle.net/11449/2319152-s2.0-77950587480Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporBoletim de Ciencias Geodesicasinfo:eu-repo/semantics/openAccess2024-06-18T15:01:53Zoai:repositorio.unesp.br:11449/231915Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:25.451953Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais Time series analysis of coordinates estimated with GPS: A methodological approach to detect, remove and recover seasonal effects |
title |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais |
spellingShingle |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais Rosa, Guilherme Poleszuk dos Santos [UNESP] GPS active networks Least square method Precise point positioning Seasonal effects Wavelets |
title_short |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais |
title_full |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais |
title_fullStr |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais |
title_full_unstemmed |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais |
title_sort |
Análise de séries temporais de coordenadas estimadas com GPS: Uma proposta metodológica para detecção, remoção e recuperação de efeitos sazonais |
author |
Rosa, Guilherme Poleszuk dos Santos [UNESP] |
author_facet |
Rosa, Guilherme Poleszuk dos Santos [UNESP] Monico, João Francisco Galera [UNESP] Chaves, João Carlos [UNESP] |
author_role |
author |
author2 |
Monico, João Francisco Galera [UNESP] Chaves, João Carlos [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Rosa, Guilherme Poleszuk dos Santos [UNESP] Monico, João Francisco Galera [UNESP] Chaves, João Carlos [UNESP] |
dc.subject.por.fl_str_mv |
GPS active networks Least square method Precise point positioning Seasonal effects Wavelets |
topic |
GPS active networks Least square method Precise point positioning Seasonal effects Wavelets |
description |
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and/or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-04-14 2022-04-29T08:48:11Z 2022-04-29T08:48:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Boletim de Ciencias Geodesicas, v. 16, n. 1, p. 51-72, 2010. 1413-4853 http://hdl.handle.net/11449/231915 2-s2.0-77950587480 |
identifier_str_mv |
Boletim de Ciencias Geodesicas, v. 16, n. 1, p. 51-72, 2010. 1413-4853 2-s2.0-77950587480 |
url |
http://hdl.handle.net/11449/231915 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Boletim de Ciencias Geodesicas |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
51-72 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129449999204352 |