Statistical Model Applied to NetFlow for Network Intrusion Detection

Detalhes bibliográficos
Autor(a) principal: Proto, Andre [UNESP]
Data de Publicação: 2010
Outros Autores: Alexandre, Leandro A., Batista, Maira L., Oliveira, Isabela L., Cansian, Adriano M., Gavrilova, M. L., Tan, CJK, Moreno, E. D.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/245663
Resumo: The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application.
id UNSP_e56c00de9d2a12e0c79d5838d75315d8
oai_identifier_str oai:repositorio.unesp.br:11449/245663
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Statistical Model Applied to NetFlow for Network Intrusion DetectionSecuritynetworkstatisticalNetFlowintrusion detectionanomalyThe computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application.UNESP Univ Estadual Paulista Julio de Mesquita Fi, Sj Do Rio Preto, S Paulo, BrazilACME Comp Secur Res Lab, Dept Ciencias Comp & Estat, Sao Jose Do Rio Preto, SP, BrazilUNESP Univ Estadual Paulista Julio de Mesquita Fi, Sj Do Rio Preto, S Paulo, BrazilSpringerUniversidade Estadual Paulista (UNESP)ACME Comp Secur Res LabProto, Andre [UNESP]Alexandre, Leandro A.Batista, Maira L.Oliveira, Isabela L.Cansian, Adriano M.Gavrilova, M. L.Tan, CJKMoreno, E. D.2023-07-29T12:01:24Z2023-07-29T12:01:24Z2010-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article179-191Transactions on Computational Science Xi: Special Issue on Security in Computing, Part Ii. Berlin: Springer-verlag Berlin, v. 6480, p. 179-191, 2010.0302-9743http://hdl.handle.net/11449/245663WOS:000286950600009Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTransactions On Computational Science Xi: Special Issue On Security In Computing, Part Iiinfo:eu-repo/semantics/openAccess2023-07-29T12:01:24Zoai:repositorio.unesp.br:11449/245663Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:01:33.768702Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Statistical Model Applied to NetFlow for Network Intrusion Detection
title Statistical Model Applied to NetFlow for Network Intrusion Detection
spellingShingle Statistical Model Applied to NetFlow for Network Intrusion Detection
Proto, Andre [UNESP]
Security
network
statistical
NetFlow
intrusion detection
anomaly
title_short Statistical Model Applied to NetFlow for Network Intrusion Detection
title_full Statistical Model Applied to NetFlow for Network Intrusion Detection
title_fullStr Statistical Model Applied to NetFlow for Network Intrusion Detection
title_full_unstemmed Statistical Model Applied to NetFlow for Network Intrusion Detection
title_sort Statistical Model Applied to NetFlow for Network Intrusion Detection
author Proto, Andre [UNESP]
author_facet Proto, Andre [UNESP]
Alexandre, Leandro A.
Batista, Maira L.
Oliveira, Isabela L.
Cansian, Adriano M.
Gavrilova, M. L.
Tan, CJK
Moreno, E. D.
author_role author
author2 Alexandre, Leandro A.
Batista, Maira L.
Oliveira, Isabela L.
Cansian, Adriano M.
Gavrilova, M. L.
Tan, CJK
Moreno, E. D.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
ACME Comp Secur Res Lab
dc.contributor.author.fl_str_mv Proto, Andre [UNESP]
Alexandre, Leandro A.
Batista, Maira L.
Oliveira, Isabela L.
Cansian, Adriano M.
Gavrilova, M. L.
Tan, CJK
Moreno, E. D.
dc.subject.por.fl_str_mv Security
network
statistical
NetFlow
intrusion detection
anomaly
topic Security
network
statistical
NetFlow
intrusion detection
anomaly
description The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-01
2023-07-29T12:01:24Z
2023-07-29T12:01:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Transactions on Computational Science Xi: Special Issue on Security in Computing, Part Ii. Berlin: Springer-verlag Berlin, v. 6480, p. 179-191, 2010.
0302-9743
http://hdl.handle.net/11449/245663
WOS:000286950600009
identifier_str_mv Transactions on Computational Science Xi: Special Issue on Security in Computing, Part Ii. Berlin: Springer-verlag Berlin, v. 6480, p. 179-191, 2010.
0302-9743
WOS:000286950600009
url http://hdl.handle.net/11449/245663
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Transactions On Computational Science Xi: Special Issue On Security In Computing, Part Ii
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 179-191
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128447714689024