Statistical Model Applied to NetFlow for Network Intrusion Detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/245663 |
Resumo: | The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application. |
id |
UNSP_e56c00de9d2a12e0c79d5838d75315d8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245663 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Statistical Model Applied to NetFlow for Network Intrusion DetectionSecuritynetworkstatisticalNetFlowintrusion detectionanomalyThe computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application.UNESP Univ Estadual Paulista Julio de Mesquita Fi, Sj Do Rio Preto, S Paulo, BrazilACME Comp Secur Res Lab, Dept Ciencias Comp & Estat, Sao Jose Do Rio Preto, SP, BrazilUNESP Univ Estadual Paulista Julio de Mesquita Fi, Sj Do Rio Preto, S Paulo, BrazilSpringerUniversidade Estadual Paulista (UNESP)ACME Comp Secur Res LabProto, Andre [UNESP]Alexandre, Leandro A.Batista, Maira L.Oliveira, Isabela L.Cansian, Adriano M.Gavrilova, M. L.Tan, CJKMoreno, E. D.2023-07-29T12:01:24Z2023-07-29T12:01:24Z2010-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article179-191Transactions on Computational Science Xi: Special Issue on Security in Computing, Part Ii. Berlin: Springer-verlag Berlin, v. 6480, p. 179-191, 2010.0302-9743http://hdl.handle.net/11449/245663WOS:000286950600009Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTransactions On Computational Science Xi: Special Issue On Security In Computing, Part Iiinfo:eu-repo/semantics/openAccess2023-07-29T12:01:24Zoai:repositorio.unesp.br:11449/245663Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:01:33.768702Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Statistical Model Applied to NetFlow for Network Intrusion Detection |
title |
Statistical Model Applied to NetFlow for Network Intrusion Detection |
spellingShingle |
Statistical Model Applied to NetFlow for Network Intrusion Detection Proto, Andre [UNESP] Security network statistical NetFlow intrusion detection anomaly |
title_short |
Statistical Model Applied to NetFlow for Network Intrusion Detection |
title_full |
Statistical Model Applied to NetFlow for Network Intrusion Detection |
title_fullStr |
Statistical Model Applied to NetFlow for Network Intrusion Detection |
title_full_unstemmed |
Statistical Model Applied to NetFlow for Network Intrusion Detection |
title_sort |
Statistical Model Applied to NetFlow for Network Intrusion Detection |
author |
Proto, Andre [UNESP] |
author_facet |
Proto, Andre [UNESP] Alexandre, Leandro A. Batista, Maira L. Oliveira, Isabela L. Cansian, Adriano M. Gavrilova, M. L. Tan, CJK Moreno, E. D. |
author_role |
author |
author2 |
Alexandre, Leandro A. Batista, Maira L. Oliveira, Isabela L. Cansian, Adriano M. Gavrilova, M. L. Tan, CJK Moreno, E. D. |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) ACME Comp Secur Res Lab |
dc.contributor.author.fl_str_mv |
Proto, Andre [UNESP] Alexandre, Leandro A. Batista, Maira L. Oliveira, Isabela L. Cansian, Adriano M. Gavrilova, M. L. Tan, CJK Moreno, E. D. |
dc.subject.por.fl_str_mv |
Security network statistical NetFlow intrusion detection anomaly |
topic |
Security network statistical NetFlow intrusion detection anomaly |
description |
The computers and network services became presence guaranteed in several places. These characteristics resulted in the growth of illicit events and therefore the computers and networks security has become an essential point in any computing environment. Many methodologies were created to identify these events; however, with increasing of users and services on the Internet, many difficulties are found in trying to monitor a large network environment. This paper proposes a methodology for events detection in large-scale networks. The proposal approaches the anomaly detection using the NetFlow protocol, statistical methods and monitoring the environment in a best time for the application. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01-01 2023-07-29T12:01:24Z 2023-07-29T12:01:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Transactions on Computational Science Xi: Special Issue on Security in Computing, Part Ii. Berlin: Springer-verlag Berlin, v. 6480, p. 179-191, 2010. 0302-9743 http://hdl.handle.net/11449/245663 WOS:000286950600009 |
identifier_str_mv |
Transactions on Computational Science Xi: Special Issue on Security in Computing, Part Ii. Berlin: Springer-verlag Berlin, v. 6480, p. 179-191, 2010. 0302-9743 WOS:000286950600009 |
url |
http://hdl.handle.net/11449/245663 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Transactions On Computational Science Xi: Special Issue On Security In Computing, Part Ii |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
179-191 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128447714689024 |