Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system

Detalhes bibliográficos
Autor(a) principal: Doretto, R. L. [UNESP]
Data de Publicação: 2012
Outros Autores: Morais Smith, C., Caldeira, A. O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevB.86.035326
http://hdl.handle.net/11449/226923
Resumo: We study the bilayer quantum Hall system at total filling factor ν T=1 within a bosonization formalism which allows us to approximately treat the magnetic exciton as a boson. We show that in the region where the distance between the two layers is comparable to the magnetic length, the ground state of the system can be seen as a finite-momentum condensate of magnetic excitons provided that the excitation spectrum is gapped. We analyze the stability of such a phase within the Bogoliubov approximation first assuming that only one momentum Q is macroscopically occupied and later we consider the same situation for two modes ±Q. We find strong evidences that a first-order quantum phase transition at small interlayer separation takes place from a zero-momentum condensate phase, which corresponds to Halperin 111 state, to a finite-momentum condensate of magnetic excitons. © 2012 American Physical Society.
id UNSP_e66abc8e791b06934b716678931e8f27
oai_identifier_str oai:repositorio.unesp.br:11449/226923
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall systemWe study the bilayer quantum Hall system at total filling factor ν T=1 within a bosonization formalism which allows us to approximately treat the magnetic exciton as a boson. We show that in the region where the distance between the two layers is comparable to the magnetic length, the ground state of the system can be seen as a finite-momentum condensate of magnetic excitons provided that the excitation spectrum is gapped. We analyze the stability of such a phase within the Bogoliubov approximation first assuming that only one momentum Q is macroscopically occupied and later we consider the same situation for two modes ±Q. We find strong evidences that a first-order quantum phase transition at small interlayer separation takes place from a zero-momentum condensate phase, which corresponds to Halperin 111 state, to a finite-momentum condensate of magnetic excitons. © 2012 American Physical Society.Instituto de Física Teórica Universidade Estadual Paulista, 01140-070 São Paulo, SPInstitute for Theoretical Physics Utrecht University, 3584 CE UtrechtInstituto de Física Gleb Wataghin Universidade Estadual de Campinas, 13083-970 Campinas, SPInstituto de Física Teórica Universidade Estadual Paulista, 01140-070 São Paulo, SPUniversidade Estadual Paulista (UNESP)Utrecht UniversityUniversidade Estadual de Campinas (UNICAMP)Doretto, R. L. [UNESP]Morais Smith, C.Caldeira, A. O.2022-04-29T04:22:54Z2022-04-29T04:22:54Z2012-07-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevB.86.035326Physical Review B - Condensed Matter and Materials Physics, v. 86, n. 3, 2012.1098-01211550-235Xhttp://hdl.handle.net/11449/22692310.1103/PhysRevB.86.0353262-s2.0-84864607763Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review B - Condensed Matter and Materials Physicsinfo:eu-repo/semantics/openAccess2022-04-29T04:22:54Zoai:repositorio.unesp.br:11449/226923Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462022-04-29T04:22:54Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
title Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
spellingShingle Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
Doretto, R. L. [UNESP]
title_short Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
title_full Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
title_fullStr Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
title_full_unstemmed Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
title_sort Finite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
author Doretto, R. L. [UNESP]
author_facet Doretto, R. L. [UNESP]
Morais Smith, C.
Caldeira, A. O.
author_role author
author2 Morais Smith, C.
Caldeira, A. O.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Utrecht University
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Doretto, R. L. [UNESP]
Morais Smith, C.
Caldeira, A. O.
description We study the bilayer quantum Hall system at total filling factor ν T=1 within a bosonization formalism which allows us to approximately treat the magnetic exciton as a boson. We show that in the region where the distance between the two layers is comparable to the magnetic length, the ground state of the system can be seen as a finite-momentum condensate of magnetic excitons provided that the excitation spectrum is gapped. We analyze the stability of such a phase within the Bogoliubov approximation first assuming that only one momentum Q is macroscopically occupied and later we consider the same situation for two modes ±Q. We find strong evidences that a first-order quantum phase transition at small interlayer separation takes place from a zero-momentum condensate phase, which corresponds to Halperin 111 state, to a finite-momentum condensate of magnetic excitons. © 2012 American Physical Society.
publishDate 2012
dc.date.none.fl_str_mv 2012-07-26
2022-04-29T04:22:54Z
2022-04-29T04:22:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevB.86.035326
Physical Review B - Condensed Matter and Materials Physics, v. 86, n. 3, 2012.
1098-0121
1550-235X
http://hdl.handle.net/11449/226923
10.1103/PhysRevB.86.035326
2-s2.0-84864607763
url http://dx.doi.org/10.1103/PhysRevB.86.035326
http://hdl.handle.net/11449/226923
identifier_str_mv Physical Review B - Condensed Matter and Materials Physics, v. 86, n. 3, 2012.
1098-0121
1550-235X
10.1103/PhysRevB.86.035326
2-s2.0-84864607763
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review B - Condensed Matter and Materials Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1797789377468825600