Pure spinor formalism as an N=2 topological string

Detalhes bibliográficos
Autor(a) principal: Berkovits, N.
Data de Publicação: 2005
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://arxiv.org/abs/hep-th/0509120
http://hdl.handle.net/11449/23554
Resumo: Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.
id UNSP_e67750b59ec44c010b90c51c9a300b91
oai_identifier_str oai:repositorio.unesp.br:11449/23554
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Pure spinor formalism as an N=2 topological stringsuperstrings and heterotic stringstopological stringsFollowing suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.Univ Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, SP, BrazilUniv Estadual Paulista, Inst Fis Teor, BR-01405900 São Paulo, SP, BrazilInt School Advanced StudiesUniversidade Estadual Paulista (Unesp)Berkovits, N.2014-05-20T14:07:03Z2014-05-20T14:07:03Z2005-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article29http://arxiv.org/abs/hep-th/0509120Journal of High Energy Physics. Trieste: Int School Advanced Studies, n. 10, 29 p., 2005.1126-6708http://hdl.handle.net/11449/23554WOS:000232976700089Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physics1,227info:eu-repo/semantics/openAccess2021-10-23T11:11:20Zoai:repositorio.unesp.br:11449/23554Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:53:49.206129Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Pure spinor formalism as an N=2 topological string
title Pure spinor formalism as an N=2 topological string
spellingShingle Pure spinor formalism as an N=2 topological string
Berkovits, N.
superstrings and heterotic strings
topological strings
title_short Pure spinor formalism as an N=2 topological string
title_full Pure spinor formalism as an N=2 topological string
title_fullStr Pure spinor formalism as an N=2 topological string
title_full_unstemmed Pure spinor formalism as an N=2 topological string
title_sort Pure spinor formalism as an N=2 topological string
author Berkovits, N.
author_facet Berkovits, N.
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Berkovits, N.
dc.subject.por.fl_str_mv superstrings and heterotic strings
topological strings
topic superstrings and heterotic strings
topological strings
description Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.
publishDate 2005
dc.date.none.fl_str_mv 2005-10-01
2014-05-20T14:07:03Z
2014-05-20T14:07:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://arxiv.org/abs/hep-th/0509120
Journal of High Energy Physics. Trieste: Int School Advanced Studies, n. 10, 29 p., 2005.
1126-6708
http://hdl.handle.net/11449/23554
WOS:000232976700089
url http://arxiv.org/abs/hep-th/0509120
http://hdl.handle.net/11449/23554
identifier_str_mv Journal of High Energy Physics. Trieste: Int School Advanced Studies, n. 10, 29 p., 2005.
1126-6708
WOS:000232976700089
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of High Energy Physics
1,227
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 29
dc.publisher.none.fl_str_mv Int School Advanced Studies
publisher.none.fl_str_mv Int School Advanced Studies
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128580353261568