Contrastive analysis for scatterplot-based representations of dimensionality reduction

Detalhes bibliográficos
Autor(a) principal: Marcílio-Jr, Wilson E. [UNESP]
Data de Publicação: 2021
Outros Autores: Eler, Danilo M. [UNESP], Garcia, Rogério E. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.cag.2021.08.014
http://hdl.handle.net/11449/229131
Resumo: Cluster interpretation after dimensionality reduction (DR) is a ubiquitous part of exploring multidimensional datasets. DR results are frequently represented by scatterplots, where spatial proximity encodes similarity among data samples. In the literature, techniques support the understanding of scatterplots’ organization by visualizing the importance of the features for cluster definition with layout enrichment strategies. However, current approaches usually focus on global information, hampering the analysis whenever the focus is to understand the differences among clusters. Thus, this paper introduces a methodology to visually explore DR results and interpret clusters’ formation based on contrastive analysis. We also introduce a bipartite graph to visually interpret and explore the relationship between the statistical variables employed to understand how the data features influence cluster formation. Our approach is demonstrated through case studies, in which we explore two document collections related to news articles and tweets about COVID-19 symptoms. Finally, we evaluate our approach through quantitative results to demonstrate its robustness to support multidimensional analysis.
id UNSP_e7c37f3d59296fb92450dece8f69b4a5
oai_identifier_str oai:repositorio.unesp.br:11449/229131
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Contrastive analysis for scatterplot-based representations of dimensionality reductionContrastive analysisDimensionality reductionVisual interpretationCluster interpretation after dimensionality reduction (DR) is a ubiquitous part of exploring multidimensional datasets. DR results are frequently represented by scatterplots, where spatial proximity encodes similarity among data samples. In the literature, techniques support the understanding of scatterplots’ organization by visualizing the importance of the features for cluster definition with layout enrichment strategies. However, current approaches usually focus on global information, hampering the analysis whenever the focus is to understand the differences among clusters. Thus, this paper introduces a methodology to visually explore DR results and interpret clusters’ formation based on contrastive analysis. We also introduce a bipartite graph to visually interpret and explore the relationship between the statistical variables employed to understand how the data features influence cluster formation. Our approach is demonstrated through case studies, in which we explore two document collections related to news articles and tweets about COVID-19 symptoms. Finally, we evaluate our approach through quantitative results to demonstrate its robustness to support multidimensional analysis.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculty of Sciences and Technology São Paulo State University (UNESP), Presidente PrudenteFaculty of Sciences and Technology São Paulo State University (UNESP), Presidente PrudenteFAPESP: #2018/17881-3FAPESP: #2018/25755-8CAPES: #88887.487331/2020-00Universidade Estadual Paulista (UNESP)Marcílio-Jr, Wilson E. [UNESP]Eler, Danilo M. [UNESP]Garcia, Rogério E. [UNESP]2022-04-29T08:30:39Z2022-04-29T08:30:39Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.cag.2021.08.014Computers and Graphics (Pergamon).0097-8493http://hdl.handle.net/11449/22913110.1016/j.cag.2021.08.0142-s2.0-85109949819Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers and Graphics (Pergamon)info:eu-repo/semantics/openAccess2024-06-18T18:18:15Zoai:repositorio.unesp.br:11449/229131Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-18T18:18:15Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Contrastive analysis for scatterplot-based representations of dimensionality reduction
title Contrastive analysis for scatterplot-based representations of dimensionality reduction
spellingShingle Contrastive analysis for scatterplot-based representations of dimensionality reduction
Marcílio-Jr, Wilson E. [UNESP]
Contrastive analysis
Dimensionality reduction
Visual interpretation
title_short Contrastive analysis for scatterplot-based representations of dimensionality reduction
title_full Contrastive analysis for scatterplot-based representations of dimensionality reduction
title_fullStr Contrastive analysis for scatterplot-based representations of dimensionality reduction
title_full_unstemmed Contrastive analysis for scatterplot-based representations of dimensionality reduction
title_sort Contrastive analysis for scatterplot-based representations of dimensionality reduction
author Marcílio-Jr, Wilson E. [UNESP]
author_facet Marcílio-Jr, Wilson E. [UNESP]
Eler, Danilo M. [UNESP]
Garcia, Rogério E. [UNESP]
author_role author
author2 Eler, Danilo M. [UNESP]
Garcia, Rogério E. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Marcílio-Jr, Wilson E. [UNESP]
Eler, Danilo M. [UNESP]
Garcia, Rogério E. [UNESP]
dc.subject.por.fl_str_mv Contrastive analysis
Dimensionality reduction
Visual interpretation
topic Contrastive analysis
Dimensionality reduction
Visual interpretation
description Cluster interpretation after dimensionality reduction (DR) is a ubiquitous part of exploring multidimensional datasets. DR results are frequently represented by scatterplots, where spatial proximity encodes similarity among data samples. In the literature, techniques support the understanding of scatterplots’ organization by visualizing the importance of the features for cluster definition with layout enrichment strategies. However, current approaches usually focus on global information, hampering the analysis whenever the focus is to understand the differences among clusters. Thus, this paper introduces a methodology to visually explore DR results and interpret clusters’ formation based on contrastive analysis. We also introduce a bipartite graph to visually interpret and explore the relationship between the statistical variables employed to understand how the data features influence cluster formation. Our approach is demonstrated through case studies, in which we explore two document collections related to news articles and tweets about COVID-19 symptoms. Finally, we evaluate our approach through quantitative results to demonstrate its robustness to support multidimensional analysis.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-04-29T08:30:39Z
2022-04-29T08:30:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.cag.2021.08.014
Computers and Graphics (Pergamon).
0097-8493
http://hdl.handle.net/11449/229131
10.1016/j.cag.2021.08.014
2-s2.0-85109949819
url http://dx.doi.org/10.1016/j.cag.2021.08.014
http://hdl.handle.net/11449/229131
identifier_str_mv Computers and Graphics (Pergamon).
0097-8493
10.1016/j.cag.2021.08.014
2-s2.0-85109949819
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computers and Graphics (Pergamon)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826304333489111040