Phantom wormholes in Einstein-Maxwell-dilaton theory

Detalhes bibliográficos
Autor(a) principal: Goulart, Prieslei [UNESP]
Data de Publicação: 2018
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1361-6382/aa9dfc
http://hdl.handle.net/11449/175703
Resumo: In this paper we give an electrically charged traversable wormhole solution for the Einstein-Maxwell-dilaton theory when the dilaton is a phantom field, i.e. it has flipped sign kinetic term appearing in the action. In the limit when the charge is zero, we recover the anti-Fisher solution, which can be reduced to the Bronnikov-Ellis solution under certain choices of integration constants. The equations of motion of this theory share the same S-duality invariance of string theory, so the electrically charged solution is rotated into the magnetically charged one by applying such transformations. The scalar field is topological, so we compute its topological charge, and discuss that under appropriate boundary conditions we can have a lump, a kink, or an anti-kink profile. We determine the position of the throat, and show the embedding diagram of the wormhole. As a physical application, we apply the Gauss-Bonnet theorem to compute the deflection angle of a light-ray that passes close to the wormhole.
id UNSP_e817ebda8f461205e00937966e0e35c7
oai_identifier_str oai:repositorio.unesp.br:11449/175703
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Phantom wormholes in Einstein-Maxwell-dilaton theoryexact solutionsGauss-Bonnet theoremwormholesIn this paper we give an electrically charged traversable wormhole solution for the Einstein-Maxwell-dilaton theory when the dilaton is a phantom field, i.e. it has flipped sign kinetic term appearing in the action. In the limit when the charge is zero, we recover the anti-Fisher solution, which can be reduced to the Bronnikov-Ellis solution under certain choices of integration constants. The equations of motion of this theory share the same S-duality invariance of string theory, so the electrically charged solution is rotated into the magnetically charged one by applying such transformations. The scalar field is topological, so we compute its topological charge, and discuss that under appropriate boundary conditions we can have a lump, a kink, or an anti-kink profile. We determine the position of the throat, and show the embedding diagram of the wormhole. As a physical application, we apply the Gauss-Bonnet theorem to compute the deflection angle of a light-ray that passes close to the wormhole.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Instituto de Física Teórica UNESP Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIInstituto de Física Teórica UNESP Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIFAPESP: 2013/00140-7Universidade Estadual Paulista (Unesp)Goulart, Prieslei [UNESP]2018-12-11T17:17:09Z2018-12-11T17:17:09Z2018-01-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1088/1361-6382/aa9dfcClassical and Quantum Gravity, v. 35, n. 2, 2018.1361-63820264-9381http://hdl.handle.net/11449/17570310.1088/1361-6382/aa9dfc2-s2.0-850397490972-s2.0-85039749097.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengClassical and Quantum Gravity1,809info:eu-repo/semantics/openAccess2023-11-11T06:16:57Zoai:repositorio.unesp.br:11449/175703Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:25:22.578766Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Phantom wormholes in Einstein-Maxwell-dilaton theory
title Phantom wormholes in Einstein-Maxwell-dilaton theory
spellingShingle Phantom wormholes in Einstein-Maxwell-dilaton theory
Goulart, Prieslei [UNESP]
exact solutions
Gauss-Bonnet theorem
wormholes
title_short Phantom wormholes in Einstein-Maxwell-dilaton theory
title_full Phantom wormholes in Einstein-Maxwell-dilaton theory
title_fullStr Phantom wormholes in Einstein-Maxwell-dilaton theory
title_full_unstemmed Phantom wormholes in Einstein-Maxwell-dilaton theory
title_sort Phantom wormholes in Einstein-Maxwell-dilaton theory
author Goulart, Prieslei [UNESP]
author_facet Goulart, Prieslei [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Goulart, Prieslei [UNESP]
dc.subject.por.fl_str_mv exact solutions
Gauss-Bonnet theorem
wormholes
topic exact solutions
Gauss-Bonnet theorem
wormholes
description In this paper we give an electrically charged traversable wormhole solution for the Einstein-Maxwell-dilaton theory when the dilaton is a phantom field, i.e. it has flipped sign kinetic term appearing in the action. In the limit when the charge is zero, we recover the anti-Fisher solution, which can be reduced to the Bronnikov-Ellis solution under certain choices of integration constants. The equations of motion of this theory share the same S-duality invariance of string theory, so the electrically charged solution is rotated into the magnetically charged one by applying such transformations. The scalar field is topological, so we compute its topological charge, and discuss that under appropriate boundary conditions we can have a lump, a kink, or an anti-kink profile. We determine the position of the throat, and show the embedding diagram of the wormhole. As a physical application, we apply the Gauss-Bonnet theorem to compute the deflection angle of a light-ray that passes close to the wormhole.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:17:09Z
2018-12-11T17:17:09Z
2018-01-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1361-6382/aa9dfc
Classical and Quantum Gravity, v. 35, n. 2, 2018.
1361-6382
0264-9381
http://hdl.handle.net/11449/175703
10.1088/1361-6382/aa9dfc
2-s2.0-85039749097
2-s2.0-85039749097.pdf
url http://dx.doi.org/10.1088/1361-6382/aa9dfc
http://hdl.handle.net/11449/175703
identifier_str_mv Classical and Quantum Gravity, v. 35, n. 2, 2018.
1361-6382
0264-9381
10.1088/1361-6382/aa9dfc
2-s2.0-85039749097
2-s2.0-85039749097.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Classical and Quantum Gravity
1,809
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128808110260224