On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes

Detalhes bibliográficos
Autor(a) principal: Batelo, M. A.
Data de Publicação: 2005
Outros Autores: Bracciali, Cleonice Fátima [UNESP], Ranga, A. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.cam.2004.09.032
http://hdl.handle.net/11449/33768
Resumo: This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.
id UNSP_e8f7578abd8fc4f77c3d04a5e9e1ea48
oai_identifier_str oai:repositorio.unesp.br:11449/33768
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classesL-orthogonal polynomialssymmetric distribution functionsThree term recurrence relationsThis paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.UNESP, Inst Biociencias Letras & Ciências Exatas, Dept Ciências Comp & Estatist, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUNESP, Inst Biociencias Letras & Ciências Exatas, Dept Ciências Comp & Estatist, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Batelo, M. A.Bracciali, Cleonice Fátima [UNESP]Ranga, A. S.2014-05-20T15:22:52Z2014-05-20T15:22:52Z2005-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15-29application/pdfhttp://dx.doi.org/10.1016/j.cam.2004.09.032Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 179, n. 1-2, p. 15-29, 2005.0377-0427http://hdl.handle.net/11449/3376810.1016/j.cam.2004.09.032WOS:000229137200004WOS000229137200004.pdf830032245262246735871233097456100000-0002-6823-4204Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Computational and Applied Mathematics1.6320,938info:eu-repo/semantics/openAccess2024-01-13T06:34:20Zoai:repositorio.unesp.br:11449/33768Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:52:28.104374Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
title On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
spellingShingle On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
Batelo, M. A.
L-orthogonal polynomials
symmetric distribution functions
Three term recurrence relations
title_short On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
title_full On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
title_fullStr On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
title_full_unstemmed On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
title_sort On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
author Batelo, M. A.
author_facet Batelo, M. A.
Bracciali, Cleonice Fátima [UNESP]
Ranga, A. S.
author_role author
author2 Bracciali, Cleonice Fátima [UNESP]
Ranga, A. S.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Batelo, M. A.
Bracciali, Cleonice Fátima [UNESP]
Ranga, A. S.
dc.subject.por.fl_str_mv L-orthogonal polynomials
symmetric distribution functions
Three term recurrence relations
topic L-orthogonal polynomials
symmetric distribution functions
Three term recurrence relations
description This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.
publishDate 2005
dc.date.none.fl_str_mv 2005-07-01
2014-05-20T15:22:52Z
2014-05-20T15:22:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.cam.2004.09.032
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 179, n. 1-2, p. 15-29, 2005.
0377-0427
http://hdl.handle.net/11449/33768
10.1016/j.cam.2004.09.032
WOS:000229137200004
WOS000229137200004.pdf
8300322452622467
3587123309745610
0000-0002-6823-4204
url http://dx.doi.org/10.1016/j.cam.2004.09.032
http://hdl.handle.net/11449/33768
identifier_str_mv Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 179, n. 1-2, p. 15-29, 2005.
0377-0427
10.1016/j.cam.2004.09.032
WOS:000229137200004
WOS000229137200004.pdf
8300322452622467
3587123309745610
0000-0002-6823-4204
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Computational and Applied Mathematics
1.632
0,938
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 15-29
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129468863086592