On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.cam.2004.09.032 http://hdl.handle.net/11449/33768 |
Resumo: | This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved. |
id |
UNSP_e8f7578abd8fc4f77c3d04a5e9e1ea48 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/33768 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classesL-orthogonal polynomialssymmetric distribution functionsThree term recurrence relationsThis paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved.UNESP, Inst Biociencias Letras & Ciências Exatas, Dept Ciências Comp & Estatist, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUNESP, Inst Biociencias Letras & Ciências Exatas, Dept Ciências Comp & Estatist, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Batelo, M. A.Bracciali, Cleonice Fátima [UNESP]Ranga, A. S.2014-05-20T15:22:52Z2014-05-20T15:22:52Z2005-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15-29application/pdfhttp://dx.doi.org/10.1016/j.cam.2004.09.032Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 179, n. 1-2, p. 15-29, 2005.0377-0427http://hdl.handle.net/11449/3376810.1016/j.cam.2004.09.032WOS:000229137200004WOS000229137200004.pdf830032245262246735871233097456100000-0002-6823-4204Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Computational and Applied Mathematics1.6320,938info:eu-repo/semantics/openAccess2024-01-13T06:34:20Zoai:repositorio.unesp.br:11449/33768Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:52:28.104374Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes |
title |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes |
spellingShingle |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes Batelo, M. A. L-orthogonal polynomials symmetric distribution functions Three term recurrence relations |
title_short |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes |
title_full |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes |
title_fullStr |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes |
title_full_unstemmed |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes |
title_sort |
On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes |
author |
Batelo, M. A. |
author_facet |
Batelo, M. A. Bracciali, Cleonice Fátima [UNESP] Ranga, A. S. |
author_role |
author |
author2 |
Bracciali, Cleonice Fátima [UNESP] Ranga, A. S. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Batelo, M. A. Bracciali, Cleonice Fátima [UNESP] Ranga, A. S. |
dc.subject.por.fl_str_mv |
L-orthogonal polynomials symmetric distribution functions Three term recurrence relations |
topic |
L-orthogonal polynomials symmetric distribution functions Three term recurrence relations |
description |
This paper deals with the classes S-3(omega, beta, b) of strong distribution functions defined on the interval [beta(2)/b, b], 0 < beta < b <= infinity, where 2 omega epsilon Z. The classification is such that the distribution function psi epsilon S-3(omega, beta, b) has a (reciprocal) symmetry, depending on omega, about the point beta. We consider properties of the L-orthogonal polynomials associated with psi epsilon S-3(omega, beta, b). Through linear combination of these polynomials we relate them to the L-orthogonal polynomials associated with some omega epsilon S-3(1/2, beta, b). (c) 2004 Elsevier B.V. All rights reserved. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-07-01 2014-05-20T15:22:52Z 2014-05-20T15:22:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.cam.2004.09.032 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 179, n. 1-2, p. 15-29, 2005. 0377-0427 http://hdl.handle.net/11449/33768 10.1016/j.cam.2004.09.032 WOS:000229137200004 WOS000229137200004.pdf 8300322452622467 3587123309745610 0000-0002-6823-4204 |
url |
http://dx.doi.org/10.1016/j.cam.2004.09.032 http://hdl.handle.net/11449/33768 |
identifier_str_mv |
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 179, n. 1-2, p. 15-29, 2005. 0377-0427 10.1016/j.cam.2004.09.032 WOS:000229137200004 WOS000229137200004.pdf 8300322452622467 3587123309745610 0000-0002-6823-4204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Computational and Applied Mathematics 1.632 0,938 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15-29 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129468863086592 |