FEMaR: A Finite Element Machine for Regression Problems

Detalhes bibliográficos
Autor(a) principal: Pereira, Danillo R. [UNESP]
Data de Publicação: 2017
Outros Autores: Papa, Joao P. [UNESP], Souza, Andre N. [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/163969
Resumo: Regression-based tasks have been the forerunner regarding the application of machine learning tools in the context of data mining. Problems related to price and stock prediction, selling estimation, and weather forecasting are commonly used as benchmarking for the comparison of regression techniques, just to name a few. Neural Networks, Decision Trees and Support Vector Machines are the most widely used approaches concerning regression-oriented applications, since they can generalize well in a number of different applications. In this work, we propose an efficient and effective regression technique based on the Finite Element Method (FEM) theory, hereinafter called Finite Element Machine for Regression (FEMaR). The proposed approach has only one parameter and it has a quadratic complexity for both training and classification phases when we use basis functions that obey some properties, as well as we show the proposed approach can obtain very competitive results when compared against some state-of-the-art regression techniques.
id UNSP_e92b7c7188687c644c2498100293e4d3
oai_identifier_str oai:repositorio.unesp.br:11449/163969
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling FEMaR: A Finite Element Machine for Regression ProblemsRegression-based tasks have been the forerunner regarding the application of machine learning tools in the context of data mining. Problems related to price and stock prediction, selling estimation, and weather forecasting are commonly used as benchmarking for the comparison of regression techniques, just to name a few. Neural Networks, Decision Trees and Support Vector Machines are the most widely used approaches concerning regression-oriented applications, since they can generalize well in a number of different applications. In this work, we propose an efficient and effective regression technique based on the Finite Element Method (FEM) theory, hereinafter called Finite Element Machine for Regression (FEMaR). The proposed approach has only one parameter and it has a quadratic complexity for both training and classification phases when we use basis functions that obey some properties, as well as we show the proposed approach can obtain very competitive results when compared against some state-of-the-art regression techniques.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, SP, BrazilFAPESP: 2013/07375-0FAPESP: 2014/16250-9FAPESP: 2014/12236-1CNPq: 306166/2014-3IeeeUniversidade Estadual Paulista (Unesp)Pereira, Danillo R. [UNESP]Papa, Joao P. [UNESP]Souza, Andre N. [UNESP]IEEE2018-11-26T17:48:36Z2018-11-26T17:48:36Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject2751-2757application/pdf2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 2751-2757, 2017.2161-4393http://hdl.handle.net/11449/163969WOS:000426968703001WOS000426968703001.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 International Joint Conference On Neural Networks (ijcnn)info:eu-repo/semantics/openAccess2024-06-28T13:34:35Zoai:repositorio.unesp.br:11449/163969Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:34:42.282339Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv FEMaR: A Finite Element Machine for Regression Problems
title FEMaR: A Finite Element Machine for Regression Problems
spellingShingle FEMaR: A Finite Element Machine for Regression Problems
Pereira, Danillo R. [UNESP]
title_short FEMaR: A Finite Element Machine for Regression Problems
title_full FEMaR: A Finite Element Machine for Regression Problems
title_fullStr FEMaR: A Finite Element Machine for Regression Problems
title_full_unstemmed FEMaR: A Finite Element Machine for Regression Problems
title_sort FEMaR: A Finite Element Machine for Regression Problems
author Pereira, Danillo R. [UNESP]
author_facet Pereira, Danillo R. [UNESP]
Papa, Joao P. [UNESP]
Souza, Andre N. [UNESP]
IEEE
author_role author
author2 Papa, Joao P. [UNESP]
Souza, Andre N. [UNESP]
IEEE
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Pereira, Danillo R. [UNESP]
Papa, Joao P. [UNESP]
Souza, Andre N. [UNESP]
IEEE
description Regression-based tasks have been the forerunner regarding the application of machine learning tools in the context of data mining. Problems related to price and stock prediction, selling estimation, and weather forecasting are commonly used as benchmarking for the comparison of regression techniques, just to name a few. Neural Networks, Decision Trees and Support Vector Machines are the most widely used approaches concerning regression-oriented applications, since they can generalize well in a number of different applications. In this work, we propose an efficient and effective regression technique based on the Finite Element Method (FEM) theory, hereinafter called Finite Element Machine for Regression (FEMaR). The proposed approach has only one parameter and it has a quadratic complexity for both training and classification phases when we use basis functions that obey some properties, as well as we show the proposed approach can obtain very competitive results when compared against some state-of-the-art regression techniques.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-26T17:48:36Z
2018-11-26T17:48:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 2751-2757, 2017.
2161-4393
http://hdl.handle.net/11449/163969
WOS:000426968703001
WOS000426968703001.pdf
identifier_str_mv 2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 2751-2757, 2017.
2161-4393
WOS:000426968703001
WOS000426968703001.pdf
url http://hdl.handle.net/11449/163969
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2017 International Joint Conference On Neural Networks (ijcnn)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2751-2757
application/pdf
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128829018865664