Spatial clustering applied to health area
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PDCAT.2011.76 http://hdl.handle.net/11449/72863 |
Resumo: | The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE. |
id |
UNSP_eb70c49a3a55bce88c6a0b3b064ed360 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72863 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Spatial clustering applied to health areaDatabaseGeographic information systemSpatial clusteringSpatial data miningWork accidentsGeographic informationDistributed computer systemsHardwareGeographic information systemsThe significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE.Depto. de Ciências de Computação e Estatística Universidade Estadual Paulista - Unesp, São José do Rio PretoDepto. de Ciências de Computação e Estatística Universidade Estadual Paulista - Unesp, São José do Rio PretoUniversidade Estadual Paulista (Unesp)Valêncio, Carlos Roberto [UNESP]De Medeiros, Camila Alves [UNESP]Ichiba, Fernando Tochio [UNESP]De Souza, Rogéria Cristiane Gratão [UNESP]2014-05-27T11:26:14Z2014-05-27T11:26:14Z2011-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject427-432http://dx.doi.org/10.1109/PDCAT.2011.76Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 427-432.http://hdl.handle.net/11449/7286310.1109/PDCAT.2011.762-s2.0-84856635878464481225387583259146517545178640000-0002-9325-31590000-0002-7449-9022Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengParallel and Distributed Computing, Applications and Technologies, PDCAT Proceedingsinfo:eu-repo/semantics/openAccess2021-10-23T10:02:43Zoai:repositorio.unesp.br:11449/72863Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:31:08.770241Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Spatial clustering applied to health area |
title |
Spatial clustering applied to health area |
spellingShingle |
Spatial clustering applied to health area Valêncio, Carlos Roberto [UNESP] Database Geographic information system Spatial clustering Spatial data mining Work accidents Geographic information Distributed computer systems Hardware Geographic information systems |
title_short |
Spatial clustering applied to health area |
title_full |
Spatial clustering applied to health area |
title_fullStr |
Spatial clustering applied to health area |
title_full_unstemmed |
Spatial clustering applied to health area |
title_sort |
Spatial clustering applied to health area |
author |
Valêncio, Carlos Roberto [UNESP] |
author_facet |
Valêncio, Carlos Roberto [UNESP] De Medeiros, Camila Alves [UNESP] Ichiba, Fernando Tochio [UNESP] De Souza, Rogéria Cristiane Gratão [UNESP] |
author_role |
author |
author2 |
De Medeiros, Camila Alves [UNESP] Ichiba, Fernando Tochio [UNESP] De Souza, Rogéria Cristiane Gratão [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Valêncio, Carlos Roberto [UNESP] De Medeiros, Camila Alves [UNESP] Ichiba, Fernando Tochio [UNESP] De Souza, Rogéria Cristiane Gratão [UNESP] |
dc.subject.por.fl_str_mv |
Database Geographic information system Spatial clustering Spatial data mining Work accidents Geographic information Distributed computer systems Hardware Geographic information systems |
topic |
Database Geographic information system Spatial clustering Spatial data mining Work accidents Geographic information Distributed computer systems Hardware Geographic information systems |
description |
The significant volume of work accidents in the cities causes an expressive loss to society. The development of Spatial Data Mining technologies presents a new perspective for the extraction of knowledge from the correlation between conventional and spatial attributes. One of the most important techniques of the Spatial Data Mining is the Spatial Clustering, which clusters similar spatial objects to find a distribution of patterns, taking into account the geographical position of the objects. Applying this technique to the health area, will provide information that can contribute towards the planning of more adequate strategies for the prevention of work accidents. The original contribution of this work is to present an application of tools developed for Spatial Clustering which supply a set of graphic resources that have helped to discover knowledge and support for management in the work accidents area. © 2011 IEEE. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-01 2014-05-27T11:26:14Z 2014-05-27T11:26:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PDCAT.2011.76 Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 427-432. http://hdl.handle.net/11449/72863 10.1109/PDCAT.2011.76 2-s2.0-84856635878 4644812253875832 5914651754517864 0000-0002-9325-3159 0000-0002-7449-9022 |
url |
http://dx.doi.org/10.1109/PDCAT.2011.76 http://hdl.handle.net/11449/72863 |
identifier_str_mv |
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings, p. 427-432. 10.1109/PDCAT.2011.76 2-s2.0-84856635878 4644812253875832 5914651754517864 0000-0002-9325-3159 0000-0002-7449-9022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
427-432 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128940516048896 |